Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(37K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell
October/31/2006
Abstract
Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.
Publication
Journal: Cell
January/30/2008
Abstract
Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
Publication
Journal: Nature
August/17/2012
Abstract
To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase ε (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Publication
Journal: Nature
June/21/2005
Abstract
To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.
Publication
Journal: Science
September/21/1998
Abstract
The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
Publication
Journal: Nature
August/16/2007
Abstract
We have previously shown that pluripotent stem cells can be induced from mouse fibroblasts by retroviral introduction of Oct3/4 (also called Pou5f1), Sox2, c-Myc and Klf4, and subsequent selection for Fbx15 (also called Fbxo15) expression. These induced pluripotent stem (iPS) cells (hereafter called Fbx15 iPS cells) are similar to embryonic stem (ES) cells in morphology, proliferation and teratoma formation; however, they are different with regards to gene expression and DNA methylation patterns, and fail to produce adult chimaeras. Here we show that selection for Nanog expression results in germline-competent iPS cells with increased ES-cell-like gene expression and DNA methylation patterns compared with Fbx15 iPS cells. The four transgenes (Oct3/4, Sox2, c-myc and Klf4) were strongly silenced in Nanog iPS cells. We obtained adult chimaeras from seven Nanog iPS cell clones, with one clone being transmitted through the germ line to the next generation. Approximately 20% of the offspring developed tumours attributable to reactivation of the c-myc transgene. Thus, iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Publication
Journal: Cell Metabolism
May/30/2008
Abstract
Cell proliferation requires nutrients, energy, and biosynthetic activity to duplicate all macromolecular components during each passage through the cell cycle. It is therefore not surprising that metabolic activities in proliferating cells are fundamentally different from those in nonproliferating cells. This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types. We also consider regulation of these fluxes by cellular mediators of signal transduction and gene expression, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR system, hypoxia-inducible factor 1 (HIF-1), and Myc, during physiologic cell proliferation and tumorigenesis.
Publication
Journal: Cell
July/3/2008
Abstract
Transcription factors (TFs) and their specific interactions with targets are crucial for specifying gene-expression programs. To gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we use chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of 13 sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12). These factors are known to play different roles in ES-cell biology as components of the LIF and BMP signaling pathways, self-renewal regulators, and key reprogramming factors. Our study provides insights into the integration of the signaling pathways into the ES-cell-specific transcription circuitries. Intriguingly, we find specific genomic regions extensively targeted by different TFs. Collectively, the comprehensive mapping of TF-binding sites identifies important features of the transcriptional regulatory networks that define ES-cell identity.
Publication
Journal: Nature
February/5/2008
Abstract
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
Publication
Journal: Nature
June/21/2005
Abstract
MicroRNAs (miRNAs) are 21-23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified. The proto-oncogene c-MYC encodes a transcription factor that regulates cell proliferation, growth and apoptosis. Dysregulated expression or function of c-Myc is one of the most common abnormalities in human malignancy. Here we show that c-Myc activates expression of a cluster of six miRNAs on human chromosome 13. Chromatin immunoprecipation experiments show that c-Myc binds directly to this locus. The transcription factor E2F1 is an additional target of c-Myc that promotes cell cycle progression. We find that expression of E2F1 is negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These findings expand the known classes of transcripts within the c-Myc target gene network, and reveal a mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal.
Publication
Journal: Genome Research
July/9/2012
Abstract
Cancer is a disease driven by genetic variation and mutation. Exome sequencing can be utilized for discovering these variants and mutations across hundreds of tumors. Here we present an analysis tool, VarScan 2, for the detection of somatic mutations and copy number alterations (CNAs) in exome data from tumor-normal pairs. Unlike most current approaches, our algorithm reads data from both samples simultaneously; a heuristic and statistical algorithm detects sequence variants and classifies them by somatic status (germline, somatic, or LOH); while a comparison of normalized read depth delineates relative copy number changes. We apply these methods to the analysis of exome sequence data from 151 high-grade ovarian tumors characterized as part of the Cancer Genome Atlas (TCGA). We validated some 7790 somatic coding mutations, achieving 93% sensitivity and 85% precision for single nucleotide variant (SNV) detection. Exome-based CNA analysis identified 29 large-scale alterations and 619 focal events per tumor on average. As in our previous analysis of these data, we observed frequent amplification of oncogenes (e.g., CCNE1, MYC) and deletion of tumor suppressors (NF1, PTEN, and CDKN2A). We searched for additional recurrent focal CNAs using the correlation matrix diagonal segmentation (CMDS) algorithm, which identified 424 significant events affecting 582 genes. Taken together, our results demonstrate the robust performance of VarScan 2 for somatic mutation and CNA detection and shed new light on the landscape of genetic alterations in ovarian cancer.
Publication
Journal: Science
July/20/1988
Abstract
A 30-amino-acid segment of C/EBP, a newly discovered enhancer binding protein, shares notable sequence similarity with a segment of the cellular Myc transforming protein. Display of these respective amino acid sequences on an idealized alpha helix revealed a periodic repetition of leucine residues at every seventh position over a distance covering eight helical turns. The periodic array of at least four leucines was also noted in the sequences of the Fos and Jun transforming proteins, as well as that of the yeast gene regulatory protein, GCN4. The polypeptide segments containing these periodic arrays of leucine residues are proposed to exist in an alpha-helical conformation, and the leucine side chains extending from one alpha helix interdigitate with those displayed from a similar alpha helix of a second polypeptide, facilitating dimerization. This hypothetical structure is referred to as the "leucine zipper," and it may represent a characteristic property of a new category of DNA binding proteins.
Publication
Journal: Yeast
October/23/1998
Abstract
We describe a straightforward PCR-based approach to the deletion, tagging, and overexpression of genes in their normal chromosomal locations in the fission yeast Schizosaccharomyces pombe. Using this approach and the S. pombe ura4+ gene as a marker, nine genes were deleted with efficiencies of homologous integration ranging from 6 to 63%. We also constructed a series of plasmids containing the kanMX6 module, which allows selection of G418-resistant cells and thus provides a new heterologous marker for use in S. pombe. The modular nature of these constructs allows a small number of PCR primers to be used for a wide variety of gene manipulations, including deletion, overexpression (using the regulatable nmt1 promoter), C- or N-terminal protein tagging (with HA, Myc, GST, or GFP), and partial C- or N-terminal deletions with or without tagging. Nine genes were manipulated using these kanMX6 constructs as templates for PCR. The PCR primers included 60 to 80 bp of flanking sequences homologous to target sequences in the genome. Transformants were screened for homologous integration by PCR. In most cases, the efficiency of homologous integration was>> or = 50%, and the lowest efficiency encountered was 17%. The methodology and constructs described here should greatly facilitate analysis of gene function in S. pombe.
Publication
Journal: Nature Genetics
May/22/2008
Abstract
Cancer cells possess traits reminiscent of those ascribed to normal stem cells. It is unclear, however, whether these phenotypic similarities reflect the activity of common molecular pathways. Here, we analyze the enrichment patterns of gene sets associated with embryonic stem (ES) cell identity in the expression profiles of various human tumor types. We find that histologically poorly differentiated tumors show preferential overexpression of genes normally enriched in ES cells, combined with preferential repression of Polycomb-regulated genes. Moreover, activation targets of Nanog, Oct4, Sox2 and c-Myc are more frequently overexpressed in poorly differentiated tumors than in well-differentiated tumors. In breast cancers, this ES-like signature is associated with high-grade estrogen receptor (ER)-negative tumors, often of the basal-like subtype, and with poor clinical outcome. The ES signature is also present in poorly differentiated glioblastomas and bladder carcinomas. We identify a subset of ES cell-associated transcription regulators that are highly expressed in poorly differentiated tumors. Our results reveal a previously unknown link between genes associated with ES cell identity and the histopathological traits of tumors and support the possibility that these genes contribute to stem cell-like phenotypes shown by many tumors.
Publication
Journal: Nature
August/16/2007
Abstract
Nuclear transplantation can reprogramme a somatic genome back into an embryonic epigenetic state, and the reprogrammed nucleus can create a cloned animal or produce pluripotent embryonic stem cells. One potential use of the nuclear cloning approach is the derivation of 'customized' embryonic stem (ES) cells for patient-specific cell treatment, but technical and ethical considerations impede the therapeutic application of this technology. Reprogramming of fibroblasts to a pluripotent state can be induced in vitro through ectopic expression of the four transcription factors Oct4 (also called Oct3/4 or Pou5f1), Sox2, c-Myc and Klf4. Here we show that DNA methylation, gene expression and chromatin state of such induced reprogrammed stem cells are similar to those of ES cells. Notably, the cells-derived from mouse fibroblasts-can form viable chimaeras, can contribute to the germ line and can generate live late-term embryos when injected into tetraploid blastocysts. Our results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.
Publication
Journal: Nature
September/16/2014
Abstract
Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.
Publication
Journal: Cell
January/29/1988
Abstract
5-azacytidine treatment of mouse C3H10T1/2 embryonic fibroblasts converts them to myoblasts at a frequency suggesting alteration of one or only a few closely linked regulatory loci. Assuming such loci to be differentially expressed as poly(A)+ RNA in proliferating myoblasts, we prepared proliferating myoblast-specific, subtracted cDNA probes to screen a myocyte cDNA library. Based on a number of criteria, three cDNAs were selected and characterized. We show that expression of one of these cDNAs transfected into C3H10T1/2 fibroblasts, where it is not normally expressed, is sufficient to convert them to stable myoblasts. Myogenesis also occurs, but to a lesser extent, when this cDNA is expressed in a number of other cell lines. The major open reading frame encoded by this cDNA contains a short protein segment similar to a sequence present in the myc protein family.
Publication
Journal: Molecular and Cellular Biology
October/2/1986
Abstract
Six monoclonal antibodies have been isolated from mice immunized with synthetic peptide immunogens whose sequences are derived from that of the human c-myc gene product. Five of these antibodies precipitate p62c-myc from human cells, and three of these five also recognize the mouse c-myc gene product. None of the antibodies sees the chicken p110gag-myc protein. All six antibodies recognize immunoblotted p62c-myc. These reagents also provide the basis for an immunoblotting assay by which to quantitate p62c-myc in cells.
Publication
Journal: Nature Biotechnology
February/21/2008
Abstract
Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.
Publication
Journal: Cell
November/7/2011
Abstract
MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.
Publication
Journal: Cell
April/25/1989
Abstract
Two cDNAs were isolated whose dimerized products bind specifically to a DNA sequence, kappa E2, located in the immunoglobulin kappa chain enhancer. Both cDNAs share a region of extensive identity to the Drosophila daughterless gene and obvious similarity to a segment in three myc proteins, MyoD, and members of the Drosophila achaete-scute and twist gene family. The homologous regions have the potential to form two amphipathic helices separated by an intervening loop. Remarkable is the stringent conservation of hydrophobic residues present in both helices. We demonstrate that this new motif plays a crucial role in both dimerization and DNA binding.
Publication
Journal: Nature
September/23/1983
Abstract
Transfection of embryo fibroblasts by a human ras oncogene does not convert them into tumour cells unless the fibroblasts are established and immortalized before transfection. The embryo fibroblasts become tumorigenic if a second oncogene such as a viral or cellular myc gene or the gene for the polyoma large-T antigen is introduced together with the ras gene.
Publication
Journal: Nature Methods
January/16/2007
Abstract
Cellular processes can only be understood as the dynamic interplay of molecules. There is a need for techniques to monitor interactions of endogenous proteins directly in individual cells and tissues to reveal the cellular and molecular architecture and its responses to perturbations. Here we report our adaptation of the recently developed proximity ligation method to examine the subcellular localization of protein-protein interactions at single-molecule resolution. Proximity probes-oligonucleotides attached to antibodies against the two target proteins-guided the formation of circular DNA strands when bound in close proximity. The DNA circles in turn served as templates for localized rolling-circle amplification (RCA), allowing individual interacting pairs of protein molecules to be visualized and counted in human cell lines and clinical specimens. We used this method to show specific regulation of protein-protein interactions between endogenous Myc and Max oncogenic transcription factors in response to interferon-gamma (IFN-gamma) signaling and low-molecular-weight inhibitors.
Publication
Journal: Cell
May/1/1992
Abstract
Although Rat-1 fibroblasts expressing c-myc constitutively are unable to arrest growth in low serum, their numbers do not increase in culture because of substantial cell death. We show this cell death to be dependent upon expression of c-myc protein and to occur by apoptosis. Regions of the c-myc protein required for induction of apoptosis overlap with regions necessary for cotransformation, autoregulation, and inhibition of differentiation, suggesting that the apoptotic function of c-myc protein is related to its other functions. Moreover, cells with higher levels of c-myc protein are more prone to cell death upon serum deprivation. Finally, we demonstrate that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.
load more...