Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(30K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Reviews Microbiology
August/25/2010
Abstract
The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.
Publication
Journal: Journal of Magnetic Resonance Imaging
November/17/1999
Abstract
We describe a standard set of quantity names and symbols related to the estimation of kinetic parameters from dynamic contrast-enhanced T(1)-weighted magnetic resonance imaging data, using diffusable agents such as gadopentetate dimeglumine (Gd-DTPA). These include a) the volume transfer constant K(trans) (min(-1)); b) the volume of extravascular extracellular space (EES) per unit volume of tissue v(e) (0 < v(e) < 1); and c) the flux rate constant between EES and plasma k(ep) (min(-1)). The rate constant is the ratio of the transfer constant to the EES (k(ep) = K(trans)/v(e)). Under flow-limited conditions K(trans) equals the blood plasma flow per unit volume of tissue; under permeability-limited conditions K(trans) equals the permeability surface area product per unit volume of tissue. We relate these quantities to previously published work from our groups; our future publications will refer to these standardized terms, and we propose that these be adopted as international standards.
Publication
Journal: Emerging Infectious Diseases
November/24/2002
Abstract
Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
Publication
Journal: Reviews of infectious diseases
May/3/1984
Abstract
For the past 30 years, considerable experimentation on the mechanisms of host responses to infection has centered on soluble products derived from phagocytic cells. The biologic activities of some of these products include fever mediated by endogenous pyrogen (EP) and induction of acute-phase responses by leukocytic endogenous mediator (LEM), EP and LEM have been characterized and purified and appear to be closely related, if not identical, molecules. Lymphocyte-activating factor (LAF), a recently described polypeptide that acts on lymphocytes, shares many of the physical properties of EP and LEM; when incubated with lymphocytes, purified EP/LEM is indistinguishable from LAF. The term interleukin-1 (IL-1) is now used to describe LAF, EP, and LEM as a single molecule or as a family of closely related molecules, although at present there is no known sequence analysis of EP, LEM, or LAF. In this review, experimental and clinical data are presented that link mediation of host responses to infection and inflammation to the production and activity of IL-1. Cell sources and inducers of IL-1 are discussed, as are its chemical nature and mechanisms of action. In addition, the importance of IL-1 and its effects on host defense mechanisms are presented. For example, how IL-1-mediated responses, such as elevated temperature, lymphocyte activation, and systemic metabolic changes, alter the host as well as the invading microbe are considered. The conclusions of this review are (1) that IL-1 is a key mediator of host responses to microbial invasion, (2) that IL-1 represents a true hormone produced during infection and inflammation, and (3) that its biologic activities account for several aspects of the acute-phase reaction.
Publication
Journal: Carcinogenesis
April/9/2009
Abstract
It is widely accepted that alterations to cyclooxygenase-2 (COX-2) expression and the abundance of its enzymatic product prostaglandin E(2) (PGE(2)) have key roles in influencing the development of colorectal cancer. Deregulation of the COX-2/PGE(2) pathway appears to affect colorectal tumorigenesis via a number of distinct mechanisms: promoting tumour maintenance and progression, encouraging metastatic spread, and perhaps even participating in tumour initiation. Here, we review the role of COX-2/PGE(2) signalling in colorectal tumorigenesis and highlight its ability to influence the hallmarks of cancer--attributes defined by Hanahan and Weinberg as being requisite for tumorigenesis. In addition, we consider components of the COX-prostaglandin pathway emerging as important regulators of tumorigenesis; namely, the prostanoid (EP) receptors, 15-hydroxyprostaglandin dehydrogenase and the prostaglandin transporter. Finally, based on recent findings, we propose a model for the cellular adaptation to the hypoxic tumour microenvironment that encompasses the interplay between COX-2, hypoxia-inducible factor 1 and dynamic switches in beta-catenin function that fine-tune signalling networks to meet the ever-changing demands of a tumour.
Publication
Journal: Journal of Magnetic Resonance Imaging
May/7/1997
Abstract
Three major models (from Tofts, Larsson, and Brix) for collecting and analyzing dynamic MRI gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) data are examined. All models use compartments representing the blood plasma and the abnormal extravascular extracellular space (EES), and they are intercompatible. All measure combinations of three parameters; (1) kPSp is the influx volume transfer constant (min-1), or permeability surface area product per unit volume of tissue, between plasma and EES; (2) ve is the volume of EES space per unit volume of tissue (0 < ve < 1); and (3) K(ep), the efflux rate constant (min-1), is the ratio of the first two parameters (k(ep) = kPSp/ve). The ratio K(ep) is the simplest to measure, requiring only signal linearity with Gd tracer concentration or, alternatively, a measurement of T1 before injection of Gd (T10). To measure the physiologic parameters kPSp and ve separately requires knowledge of T10 and of the tissue relaxivity R1 (approximately in vitro value).
Authors
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Biological Chemistry
May/30/2007
Abstract
Prostaglandin (PG) E(2) exerts its actions by acting on a group of G-protein-coupled receptors (GPCRs). There are four GPCRs responding to PGE(2) designated subtypes EPEPEPEPEPEP subtypes exhibit differences in signal transduction, tissue localization, and regulation of expression. This molecular and biochemical heterogeneity of PGE receptors leads to PGE(2) being the most versatile prostanoid. Studies on knock-out mice deficient in each EP subtype have defined PGE(2) actions mediated by each subtype and identified the role each EP subtype plays in various physiological and pathophysiological responses. Here we review recent advances in PGE receptor research.
Publication
Journal: Bioinformatics
January/10/2010
Abstract
METHODS
VARNA is a tool for the automated drawing, visualization and annotation of the secondary structure of RNA, designed as a companion software for web servers and databases.
METHODS
VARNA implements four drawing algorithms, supports input/output using the classic formats dbn, ct, bpseq and RNAML and exports the drawing as five picture formats, either pixel-based (JPEG, PNG) or vector-based (SVG, EPS and XFIG). It also allows manual modification and structural annotation of the resulting drawing using either an interactive point and click approach, within a web server or through command-line arguments.
BACKGROUND
VARNA is a free software, released under the terms of the GPLv3.0 license and available at http://varna.lri.fr.
BACKGROUND
Supplementary data are available at Bioinformatics online.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Reviews Microbiology
May/17/2017
Abstract
Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Molecular Microbiology
December/9/2003
Abstract
Multiple quorum-sensing circuits function in parallel to control virulence and biofilm formation in Vibrio cholerae. In contrast to other bacterial pathogens that induce virulence factor production and/or biofilm formation at high cell density in the presence of quorum-sensing autoinducers, V. cholerae represses these behaviours at high cell density. Consistent with this, we show here that V. cholerae strains 'locked' in the regulatory state mimicking low cell density are enhanced for biofilm production whereas mutants 'locked' in the regulatory state mimicking high cell density are incapable of producing biofilms. The quorum-sensing cascade we have identified in V. cholerae regulates the transcription of genes involved in exopolysaccharide production (EPS), and variants that produce EPS and form biofilms arise at high frequency from non-EPS, non-biofilm producing strains. Our data show that spontaneous mutation of the transcriptional regulator hapR is responsible for this effect. Several toxigenic strains of V. cholerae possess a naturally occurring frameshift mutation in hapR. Thus, the distinct environments occupied by this aquatic pathogen presumably include niches where cell-cell communication is crucial, as well as ones where loss of quorum sensing via hapR mutation confers a selective advantage. Bacterial biofilms could represent a complex habitat where such differentiation occurs.
Publication
Journal: Annual Review of Pharmacology and Toxicology
June/13/2001
Abstract
Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE(2), PGF(2 alpha), PGI(2), TxA(2), and PGD(2). These autacrine lipid mediators interact with specific members of a family of distinct G-protein-coupled prostanoid receptors, designated EP, FP, IP, TP, and DP, respectively. Each of these receptors has been cloned, expressed, and characterized. This family of eight prostanoid receptor complementary DNAs encodes seven transmembrane proteins which are typical of G-protein-coupled receptors and these receptors are distinguished by their ligand-binding profiles and the signal transduction pathways activated on ligand binding. Ligand-binding selectivity of these receptors is determined by both the transmembrane sequences and amino acid residues in the putative extracellular-loop regions. The selectivity of interaction between the receptors and G proteins appears to be mediated at least in part by the C-terminal tail region. Each of the EP(1), EP(3), FP, and TP receptors has alternative splice variants described that alter the coding sequence in the C-terminal intracellular tail region. The C-terminal variants modulate signal transduction, phosphorylation, and desensitization of these receptors, as well as altering agonist-independent constitutive activity.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cellular Microbiology
July/26/2009
Abstract
Several pathogens associated with chronic infections, including Pseudomonas aeruginosa in cystic fibrosis pneumonia, Haemophilus influenzae and Streptococcus pneumoniae in chronic otitis media, Staphylococcus aureus in chronic rhinosinusitis and enteropathogenic Escherichia coli in recurrent urinary tract infections, are linked to biofilm formation. Biofilms are usually defined as surface-associated microbial communities, surrounded by an extracellular polymeric substance (EPS) matrix. Biofilm formation has been demonstrated for numerous pathogens and is clearly an important microbial survival strategy. However, outside of dental plaques, fewer reports have investigated biofilm development in clinical samples. Typically biofilms are found in chronic diseases that resist host immune responses and antibiotic treatment and these characteristics are often cited for the ability of bacteria to persist in vivo. This review examines some recent attempts to examine the biofilm phenotype in vivo and discusses the challenges and implications for defining a biofilm phenotype.
Pulse
Views:
6
Posts:
No posts
Rating:
Not rated
Publication
Journal: American Journal of Pathology
August/7/2000
Abstract
Endocytosis is critical to the function and fate of molecules important to Alzheimer's disease (AD) etiology, including the beta protein precursor (betaPP), amyloid beta (Abeta) peptide, and apolipoprotein E (ApoE). Early endosomes, a major site of Abeta peptide generation, are markedly enlarged within neurons in the Alzheimer brain, suggesting altered endocytic pathway (EP) activity. Here, we show that neuronal EP activation is a specific and very early response in AD. To evaluate endocytic activation, we used markers of internalization (rab5, rabaptin 5) and recycling (rab4), and found that enlargement of rab5-positive early endosomes in the AD brain was associated with elevated levels of rab4 immunoreactive protein and translocation of rabaptin 5 to endosomes, implying that both endocytic uptake and recycling are activated. These abnormalities were evident in pyramidal neurons of the neocortex at preclinical stages of disease when Alzheimer-like neuropathology, such as Abeta deposition, was restricted to the entorhinal region. In Down syndrome, early endosomes were significantly enlarged in some pyramidal neurons as early as 28 weeks of gestation, decades before classical AD neuropathology develops. Markers of EP activity were only minimally influenced by normal aging and other neurodegenerative diseases studied. Inheritance of the epsilon4 allele of APOE, however, accentuated early endosome enlargement at preclinical stages of AD. By contrast, endosomes were normal in size at advanced stages of familial AD caused by mutations of presenilin 1 or 2, indicating that altered endocytosis is not a consequence of Abeta deposition. These results identify EP activation as the earliest known intraneuronal change to occur in sporadic AD, the most common form of AD. Given the important role of the EP in Abeta peptide generation and ApoE function, early endosomal abnormalities provide a mechanistic link between EP alterations, genetic susceptibility factors, and Abeta generation and suggest differences that may be involved in Abeta generation and beta amyloidogenesis in subtypes of AD.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: Molecular Microbiology
August/13/2008
Abstract
High levels of the intracellular signalling molecule cyclic diguanylate (c-di-GMP) supress motility and activate exopolysaccharide (EPS) production in a variety of bacterial species. In many bacteria part of the effect of c-di-GMP is on gene expression, but the mechanism involved is not known for any species. We have identified the protein FleQ as a c-di-GMP-responsive transcriptional regulator in Pseudomonas aeruginosa. FleQ is known to activate expression of flagella biosynthesis genes. Here we show that it also represses transcription of genes including the pel operon involved in EPS biosynthesis, and that this repression is relieved by c-di-GMP. Our in vivo data indicate that FleQ represses pel transcription and that pel transcription is not repressed when intracellular c-di-GMP levels are high. FleN, a known antiactivator of FleQ also participates in control of pel expression. In in vitro experiments we found that FleQ binds to pel promoter DNA and that this binding is inhibited by c-di-GMP. FleQ binds radiolabelled c-di-GMP in vitro. FleQ does not have amino acid motifs that resemble previously defined c-di-GMP binding domains. Our results show that FleQ is a new type of c-di-GMP binding protein that controls the transcriptional regulation of EPS biosynthesis genes in P. aeruginosa.
Publication
Journal: Biochemical Journal
July/7/1982
Abstract
1. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) at a concentration of 0.5 mM had no effect on the serine proteinases plasma kallikrein and leucocyte elastase or the metalloproteinases thermolysin and clostridial collagenase. In contrast, 10 muM-E-64 rapidly inactivated the cysteine proteinases cathepsins B, H and L and papain (t0.5 = 0.1-17.3s). The streptococcal cysteine proteinase reacted much more slowly, and there was no irreversible inactivation of clostripain. The cysteine-dependent exopeptidase dipeptidyl peptidase I was very slowly inactivated by E-64. 2. the active-site-directed nature of the interaction of cathepsin B and papain with E-64 was established by protection of the enzyme in the presence of the reversible competitive inhibitor leupeptin and by the stereospecificity for inhibition by the L as opposed to the D compound. 3. It was shown that the rapid stoichiometric reaction of the cysteine proteinases related to papain can be used to determine the operational molarity of solutions of the enzymes and thus to calibrate rate assays. 4. The apparent second-order rate constants for the inactivation of human cathepsins B and H and rat cathepsin L by a series of structural analogues of E-64 are reported, and compared with those for some other active-site-directed inhibitors of cysteine proteinases. 5. L-trans-Epoxysuccinyl-leucylamido(3-methyl)butane (Ep-475) was found to inhibit cathepsins B and L more rapidly than E-64. 6. Fumaryl-leucylamido(3-methyl)butane (Dc-11) was 100-fold less reactive than the corresponding epoxide, but was nevertheless about as effective as iodoacetate.
Publication
Journal: Molecular Microbiology
July/13/2005
Abstract
Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.
Publication
Journal: Nature Genetics
January/22/2009
Abstract
Lynch syndrome patients are susceptible to colorectal and endometrial cancers owing to inactivating germline mutations in mismatch repair genes, including MSH2 (ref. 1). Here we describe patients from Dutch and Chinese families with MSH2-deficient tumors carrying heterozygous germline deletions of the last exons of TACSTD1, a gene directly upstream of MSH2 encoding Ep-CAM. Due to these deletions, transcription of TACSTD1 extends into MSH2. The MSH2 promoter in cis with the deletion is methylated in Ep-CAM positive but not in Ep-CAM negative normal tissues, thus revealing a correlation between activity of the mutated TACSTD1 allele and epigenetic inactivation of the corresponding MSH2 allele. Gene silencing by transcriptional read-through of a neighboring gene in either sense, as demonstrated here, or antisense direction, could represent a general mutational mechanism. Depending on the expression pattern of the neighboring gene that lacks its normal polyadenylation signal, this may cause either generalized or mosaic patterns of epigenetic inactivation.
Publication
Journal: Journal of Bacteriology
January/13/2008
Publication
Journal: Magnetic Resonance in Medicine
October/18/2000
Abstract
Echo planar (EP) diffusion tensor imaging (DTI) permits in vivo identification of the orientation and coherence of brain white matter tracts but suffers from field inhomogeneity-induced geometric distortion. To reduce spatial distortion, polynomial warping corrections were applied and the effects tested on measures of fractional anisotropy (FA) in the genu and splenium of corpus callosum. Implementation entailed spatially warping EP images obtained without diffusion weighting (b = 0) to long-echo T(2)-weighted fast spin echo images, collected for anatomical delineation, tissue segmentation, and coregistration with the diffusion images. Using the optimal warping procedure (third-order polynomial), the effects of age on FA and a quantitative measure of intervoxel coherence (C) in the genu, splenium, centrum semiovale, and frontal and parietal pericallosal white matter were examined in 31 healthy men (23-76 years). FA declined significantly with age in all regions except the splenium, whereas intervoxel coherence positively correlated with age in the genu. Magn Reson Med 44:259-268, 2000.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
October/27/2002
Abstract
Sepsis, a potentially fatal clinical syndrome, is mediated by an early (e.g., tumor necrosis factor and IL-1) and late [e.g., high mobility group B-1 (HMGB1)] proinflammatory cytokine response to infection. Specifically targeting early mediators has not been effective clinically, in part because peak mediator activity often has passed before therapy can be initiated. Late-acting downstream effectors, such as HMGB1, that mediate sepsis lethality may be more relevant therapeutic targets. Ethyl pyruvate (EP) recently was identified as an experimental therapeutic that significantly protects against lethal hemorrhagic shock. Here, we report that EP attenuates lethal systemic inflammation caused by either endotoxemia or sepsis even if treatment begins after the early tumor necrosis factor response. Treatment with EP initiated 24 h after cecal puncture significantly increased survival (vehicle survival = 30% vs. EP survival = 88%, P < 0.005). EP treatment significantly reduced circulating levels of HMGB1 in animals with established endotoxemia or sepsis. In macrophage cultures, EP specifically inhibited activation of p38 mitogen-activated protein kinase and NF-kappaB, two signaling pathways that are critical for cytokine release. This report describes a new strategy to pharmacologically inhibit HMGB1 release with a small molecule that is effective at clinically achievable concentrations. EP now warrants further evaluation as an experimental "rescue" therapeutic for sepsis and other potentially fatal systemic inflammatory disorders.
Publication
Journal: Journal of Bacteriology
July/12/2000
Abstract
Although exopolysaccharides (EPSs) are a large component of bacterial biofilms, their contribution to biofilm structure and function has been examined for only a few organisms. In each of these cases EPS has been shown to be required for cellular attachment to abiotic surfaces. Here, we undertook a genetic approach to examine the potential role of colanic acid, an EPS of Escherichia coli K-12, in biofilm formation. Strains either proficient or deficient in colanic acid production were grown and allowed to adhere to abiotic surfaces and were then examined both macroscopically and microscopically. Surprisingly, we found that colanic acid production is not required for surface attachment. Rather, colanic acid is critical for the formation of the complex three-dimensional structure and depth of E. coli biofilms.
Pulse
Views:
5
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Biological Chemistry
July/4/2001
Abstract
Chronic use of nonsteroidal anti-inflammatory drugs results in a significant reduction of risk and mortality from colorectal cancer in humans. All of the mechanism(s) by which nonsteroidal anti-inflammatory drugs exert their protective effects are not completely understood, but they are known to inhibit cyclooxygenase activity. The cyclooxygenase enzymes catalyze a key reaction in the conversion of arachidonic acid to prostaglandins, such as prostaglandin E(2) (PGE(2)). Here we demonstrate that PGE(2) treatment of LS-174 human colorectal carcinoma cells leads to increased motility and changes in cell shape. The prostaglandin EP(4) receptor signaling pathway appears to play a role in transducing signals which regulate these effects. PGE(2) treatment results in an activation of phosphatidylinositol 3-kinase/protein kinase B pathway that is required for the PGE(2)-induced changes in carcinoma cell motility and colony morphology. Our results suggest that PGE(2) might enhance the invasive potential of colorectal carcinoma cells via activation of major intracellular signal transduction pathways not previously reported to be regulated by prostaglandins.
Publication
Journal: Blood
June/30/1993
Abstract
Available evidence indicates that qualitative changes in hematopoietic stem cells and progenitors, such as the decision of stem cells to self-renew or differentiate, or selection of lineage potentials by the multipotential progenitors during differentiation (commitment), are intrinsic properties of the progenitors and are stochastic in nature. In-contrast, proliferative kinetics of the progenitors, namely survival and expansion of the progenitors, appear to be controlled by a number of interacting cytokines. While proliferation and maturation of committed progenitors is controlled by late-acting lineage-specific factors such as Ep, M-CSF, G-CSF, and IL-5, progenitors at earlier stages of development are controlled by a group of several overlapping cytokines. IL-3, GM-CSF, and IL-4 regulate proliferation of multipotential progenitors only after they exit from G0 and begin active cell proliferation. Triggering of cycling by dormant primitive progenitors and maintenance of B-cell potential of the primitive progenitors appears to require interactions of early acting cytokines including IL-6, G-CSF, IL-11, IL-12, LIF, and SF. Currently, this simple model fits our understanding of the interactions of growth factors with hematopoietic progenitors. Naturally the model risks oversimplification of a very complex process. However, because the model is testable, it will hopefully challenge investigators to design new experiments to examine its validity.
Authors
Publication
Journal: Annual Review of Microbiology
February/17/1997
Abstract
Bacterial polysaccharides are usually associated with the outer surface of the bacterium. They can form an amorphous layer of extracellular polysaccharide (EPS) surrounding the cell that may be further organized into a distinct structure termed a capsule. Additional polysaccharide molecules such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS) may also decorate the cell surface. Polysaccharide capsules may mediate a number of biological processes, including invasive infections of human beings. Discussed here are the genetics and biochemistry of selected bacterial capsular polysaccharides and the basis of capsule diversity but not the genetics and biochemistry of LPS biosynthesis (for reviews see 100, 140).
load more...