Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(40K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell Stem Cell
October/7/2010
Abstract
Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:
Publication
Journal: Progress in Neurobiology
October/24/2001
Abstract
Glycogen synthase kinase-3beta (GSK3beta) is a fascinating enzyme with an astoundingly diverse number of actions in intracellular signaling systems. GSK3beta activity is regulated by serine (inhibitory) and tyrosine (stimulatory) phosphorylation, by protein complex formation, and by its intracellular localization. GSK3beta phosphorylates and thereby regulates the functions of many metabolic, signaling, and structural proteins. Notable among the signaling proteins regulated by GSK3beta are the many transcription factors, including activator protein-1, cyclic AMP response element binding protein, heat shock factor-1, nuclear factor of activated T cells, Myc, beta-catenin, CCAAT/enhancer binding protein, and NFkappaB. Lithium, the primary therapeutic agent for bipolar mood disorder, is a selective inhibitor of GSK3beta. This raises the possibility that dysregulation of GSK3beta and its inhibition by lithium may contribute to the disorder and its treatment, respectively. GSK3beta has been linked to all of the primary abnormalities associated with Alzheimer's disease. These include interactions between GSK3beta and components of the plaque-producing amyloid system, the participation of GSK3beta in phosphorylating the microtubule-binding protein tau that may contribute to the formation of neurofibrillary tangles, and interactions of GSK3beta with presenilin and other Alzheimer's disease-associated proteins. GSK3beta also regulates cell survival, as it facilitates a variety of apoptotic mechanisms, and lithium provides protection from many insults. Thus, GSK3beta has a central role regulating neuronal plasticity, gene expression, and cell survival, and may be a key component of certain psychiatric and neurodegenerative diseases.
Publication
Journal: New England Journal of Medicine
October/13/2010
Abstract
BACKGROUND
Long-QT syndromes are heritable diseases associated with prolongation of the QT interval on an electrocardiogram and a high risk of sudden cardiac death due to ventricular tachyarrhythmia. In long-QT syndrome type 1, mutations occur in the KCNQ1 gene, which encodes the repolarizing potassium channel mediating the delayed rectifier I(Ks) current.
METHODS
We screened a family affected by long-QT syndrome type 1 and identified an autosomal dominant missense mutation (R190Q) in the KCNQ1 gene. We obtained dermal fibroblasts from two family members and two healthy controls and infected them with retroviral vectors encoding the human transcription factors OCT3/4, SOX2, KLF4, and c-MYC to generate pluripotent stem cells. With the use of a specific protocol, these cells were then directed to differentiate into cardiac myocytes.
RESULTS
Induced pluripotent stem cells maintained the disease genotype of long-QT syndrome type 1 and generated functional myocytes. Individual cells showed a “ventricular,” “atrial,” or “nodal” phenotype, as evidenced by the expression of cell-type–specific markers and as seen in recordings of the action potentials in single cells. The duration of the action potential was markedly prolonged in “ventricular” and “atrial” cells derived from patients with long-QT syndrome type 1, as compared with cells from control subjects. Further characterization of the role of the R190Q–KCNQ1 mutation in the pathogenesis of long-QT syndrome type 1 revealed a dominant negative trafficking defect associated with a 70 to 80% reduction in I(Ks) current and altered channel activation and deactivation properties. Moreover, we showed that myocytes derived from patients with long-QT syndrome type 1 had an increased susceptibility to catecholamine-induced tachyarrhythmia and that beta-blockade attenuated this phenotype.
CONCLUSIONS
We generated patient-specific pluripotent stem cells from members of a family affected by long-QT syndrome type 1 and induced them to differentiate into functional cardiac myocytes. The patient-derived cells recapitulated the electrophysiological features of the disorder. (Funded by the European Research Council and others.)
Publication
Journal: Genes and Development
November/30/2008
Abstract
The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.
Publication
Journal: Nature
September/26/1999
Abstract
The mechanisms of cell proliferation and transformation are intrinsically linked to the process of apoptosis: the default of proliferating cells is to die unless specific survival signals are provided. Platelet-derived growth factor (PDGF) is a principal survival factor that inhibits apoptosis and promotes proliferation, but the mechanisms mediating its anti-apoptotic properties are not completely understood. Here we show that the transcription factor NF-kappaB is important in PDGF signalling. NF-kappaB transmits two signals: one is required for the induction of proto-oncogene c-myc and proliferation, and the second, an anti-apoptotic signal, counterbalances c-Myc cytotoxicity. We have traced a putative pathway whereby PDGF activates NF-kappaB through Ras and phospatidylinositol-3-kinase (PI(3)K) to the PKB/Akt protein kinase and the IkappaB kinase (IKK); NF-kappaB thus appears to be a target of the anti-apoptotic Ras/PI(3)K/Akt pathway. We show that, upon PDGF stimulation, Akt transiently associates in vivo with IKK and induces IKK activation. These findings establish a role for NF-kappaB in growth factor signalling and define an anti-apoptotic Ras/PI(3)K/Akt/IKK/NF-kappaB pathway, thus linking anti-apoptotic signalling with transcription machinery.
Publication
Journal: Cell
December/10/2012
Abstract
The c-Myc HLH-bZIP protein has been implicated in physiological or pathological growth, proliferation, apoptosis, metabolism, and differentiation at the cellular, tissue, or organismal levels via regulation of numerous target genes. No principle yet unifies Myc action due partly to an incomplete inventory and functional accounting of Myc's targets. To observe Myc target expression and function in a system where Myc is temporally and physiologically regulated, the transcriptomes and the genome-wide distributions of Myc, RNA polymerase II, and chromatin modifications were compared during lymphocyte activation and in ES cells as well. A remarkably simple rule emerged from this quantitative analysis: Myc is not an on-off specifier of gene activity, but is a nonlinear amplifier of expression, acting universally at active genes, except for immediate early genes that are strongly induced before Myc. This rule of Myc action explains the vast majority of Myc biology observed in literature.
Publication
Journal: Genes and Development
November/12/2000
Abstract
Our recent work has shown that activation of the Ras/Raf/ERK pathway extends the half-life of the Myc protein and thus enhances the accumulation of Myc activity. We have extended these observations by investigating two N-terminal phosphorylation sites in Myc, Thr 58 and Ser 62, which are known to be regulated by mitogen stimulation. We now show that the phosphorylation of these two residues is critical for determining the stability of Myc. Phosphorylation of Ser 62 is required for Ras-induced stabilization of Myc, likely mediated through the action of ERK. Conversely, phosphorylation of Thr 58, likely mediated by GSK-3 but dependent on the prior phosphorylation of Ser 62, is associated with degradation of Myc. Further analysis demonstrates that the Ras-dependent PI-3K pathway is also critical for controlling Myc protein accumulation, likely through the control of GSK-3 activity. These observations thus define a synergistic role for multiple Ras-mediated phosphorylation pathways in the control of Myc protein accumulation during the initial stage of cell proliferation.
Publication
Journal: Genes and Development
August/26/1998
Abstract
Establishment of primary mouse embryo fibroblasts (MEFs) as continuously growing cell lines is normally accompanied by loss of the p53 or p19(ARF) tumor suppressors, which act in a common biochemical pathway. myc rapidly activates ARF and p53 gene expression in primary MEFs and triggers replicative crisis by inducing apoptosis. MEFs that survive myc overexpression sustain p53 mutation or ARF loss during the process of establishment and become immortal. MEFs lacking ARF or p53 exhibit an attenuated apoptotic response to myc ab initio and rapidly give rise to cell lines that proliferate in chemically defined medium lacking serum. Therefore, ARF regulates a p53-dependent checkpoint that safeguards cells against hyperproliferative, oncogenic signals.
Publication
Journal: Annual Review of Cell and Developmental Biology
March/7/2001
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/12/2011
Abstract
The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mechanisms driving its aberrant expression and the challenge of disrupting protein-DNA interactions. Here, we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule inhibitors of the BET family of chromatin adaptors. MYC transcriptional suppression was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain-promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G(1) arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from cell cycle arrest and growth suppression by BET inhibitors. MYC suppression was accompanied by deregulation of the MYC transcriptome, including potent reactivation of the p21 tumor suppressor. Treatment with a BET inhibitor resulted in significant antitumor activity in xenograft models of Burkitt's lymphoma and acute myeloid leukemia. These findings demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains. Such inhibitors may have clinical utility given the widespread pathogenetic role of MYC in cancer.
Publication
Journal: Nature
December/7/2009
Abstract
Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.
Publication
Journal: Nature Genetics
November/5/2006
Abstract
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/12/2008
Abstract
The long-term goal of nuclear transfer or alternative reprogramming approaches is to create patient-specific donor cells for transplantation therapy, avoiding immunorejection, a major complication in current transplantation medicine. It was recently shown that the four transcription factors Oct4, Sox2, Klf4, and c-Myc induce pluripotency in mouse fibroblasts. However, the therapeutic potential of induced pluripotent stem (iPS) cells for neural cell replacement strategies remained unexplored. Here, we show that iPS cells can be efficiently differentiated into neural precursor cells, giving rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells migrate into various brain regions and differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Electrophysiological recordings and morphological analysis demonstrated that the grafted neurons had mature neuronal activity and were functionally integrated in the host brain. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease upon transplantation into the adult brain. We minimized the risk of tumor formation from the grafted cells by separating contaminating pluripotent cells and committed neural cells using fluorescence-activated cell sorting. Our results demonstrate the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement in the animal model.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/4/2010
Abstract
As the result of genetic alterations and tumor hypoxia, many cancer cells avidly take up glucose and generate lactate through lactate dehydrogenase A (LDHA), which is encoded by a target gene of c-Myc and hypoxia-inducible factor (HIF-1). Previous studies with reduction of LDHA expression indicate that LDHA is involved in tumor initiation, but its role in tumor maintenance and progression has not been established. Furthermore, how reduction of LDHA expression by interference or antisense RNA inhibits tumorigenesis is not well understood. Here, we report that reduction of LDHA by siRNA or its inhibition by a small-molecule inhibitor (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid]) reduced ATP levels and induced significant oxidative stress and cell death that could be partially reversed by the antioxidant N-acetylcysteine. Furthermore, we document that FX11 inhibited the progression of sizable human lymphoma and pancreatic cancer xenografts. When used in combination with the NAD(+) synthesis inhibitor FK866, FX11 induced lymphoma regression. Hence, inhibition of LDHA with FX11 is an achievable and tolerable treatment for LDHA-dependent tumors. Our studies document a therapeutical approach to the Warburg effect and demonstrate that oxidative stress and metabolic phenotyping of cancers are critical aspects of cancer biology to consider for the therapeutical targeting of cancer energy metabolism.
Publication
Journal: Plant Cell
December/6/2004
Abstract
The MYC-like sequence CATGTG plays an important role in the dehydration-inducible expression of the Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION STRESS 1 (ERD1) gene, which encodes a ClpA (ATP binding subunit of the caseinolytic ATP-dependent protease) homologous protein. Using the yeast one-hybrid system, we isolated three cDNA clones encoding proteins that bind to the 63-bp promoter region of erd1, which contains the CATGTG motif. These three cDNA clones encode proteins named ANAC019, ANAC055, and ANAC072, which belong to the NAC transcription factor family. The NAC proteins bound specifically to the CATGTG motif both in vitro and in vivo and activated the transcription of a beta-glucuronidase (GUS) reporter gene driven by the 63-bp region containing the CATGTG motif in Arabidopsis T87 protoplasts. The expression of ANAC019, ANAC055, and ANAC072 was induced by drought, high salinity, and abscisic acid. A histochemical assay using P(NAC)-GUS fusion constructs showed that expression of the GUS reporter gene was localized mainly to the leaves of transgenic Arabidopsis plants. Using the yeast one-hybrid system, we determined the complete NAC recognition sequence, containing CATGT and harboring CACG as the core DNA binding site. Microarray analysis of transgenic plants overexpressing either ANAC019, ANAC055, or ANAC072 revealed that several stress-inducible genes were upregulated in the transgenic plants, and the plants showed significantly increased drought tolerance. However, erd1 was not upregulated in the transgenic plants. Other interacting factors may be necessary for the induction of erd1 in Arabidopsis under stress conditions.
Publication
Journal: New England Journal of Medicine
November/14/1985
Abstract
Eighty-nine patients with untreated primary neuroblastomas were studied to determine the relation between the number of copies of the N-myc oncogene and survival without disease progression. Genomic amplification (3 to 300 copies) of N-myc was detected in 2 of 16 tumors in Stage II, 13 of 20 in Stage III, and 19 of 40 in Stage IV; in contrast, 8 Stage I and 5 Stage IV-S tumors all had 1 copy of the gene (P less than 0.01). Analysis of progression-free survival in all patients revealed that amplification of N-myc was associated with the worst prognosis (P less than 0.0001); the estimated progression-free survival at 18 months was 70 per cent, 30 per cent, and 5 per cent for patients whose tumors had 1, 3 to 10, or more than 10 N-myc copies, respectively. Of 16 Stage II tumors, 2 with amplification metastasized, whereas only 1 of 14 without amplification did so (P = 0.03). Stage IV tumors with amplification progressed most rapidly: nine months after diagnosis the estimated progression-free survival was 61 per cent, 47 per cent, and 0 per cent in patients whose tumors had 1, 3 to 10, or more than 10 copies, respectively (P less than 0.0001). These results suggest that genomic amplification of N-myc may have a key role in determining the aggressiveness of neuroblastomas.
Publication
Journal: Nature Reviews Molecular Cell Biology
August/25/2005
Abstract
Myc genes are key regulators of cell proliferation, and their deregulation contributes to the genesis of most human tumours. Recently, a wealth of data has shed new light on the biochemical functions of Myc proteins and on the mechanisms through which they function in cellular transformation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/23/1983
Abstract
The consistent appearance of specific chromosomal translocations in human Burkitt lymphomas and murine plasmacytomas has suggested that these translocations might play a role in malignant transformation. Here we show that transformation of these cells is frequently accompanied by the somatic rearrangement of a cellular analogue of an avian retrovirus transforming gene, c-myc. Moreover, we map c-myc to human chromosome 8 band q24, the chromosomal segment involved in the reciprocal Burkitt translocations [t(8;14), t(8;22) and t(2;8)]. In two t(8;14) human Burkitt cell lines, c-myc appears to have been translocated directly into a DNA restriction fragment that also encodes the immunoglobulin mu chain gene. In the case of a specific cloned fragment of DNA derived from a mouse plasmacytoma, we demonstrate directly that c-myc has been translocated into the immunoglobulin alpha switch region. Our data provide a molecular basis for considering the role that specific translocations might play in malignant transformation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/28/2008
Abstract
The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.
Publication
Journal: Oncogene
June/24/1999
Abstract
c-myc, N-myc and L-myc are the three members of the myc oncoprotein family whose role in the pathogenesis of many human neoplastic diseases has received wide empirical support. In this review, we first summarize data, derived mainly from non-clinical studies, indicating that these oncoproteins actually serve quite different roles in vivo. This concept necessarily lies at the heart of the basis for the observation that the deregulated expression of each MYC gene is reproducibly associated with only certain naturally occurring malignancies in humans and that these genes are not interchangeable with respect to their aberrant functional consequences. We also review evidence implicating each of the above MYC genes in specific neoplastic diseases and have attempted to identify unresolved questions which deserve further basic or clinical investigation. We have made every attempt to review those diseases for which significant and confirmatory evidence, based on studies with primary tumor material, exists to implicate MYC members in their causation and/or progression.
Publication
Journal: Cell
November/22/2012
Abstract
Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication.
Publication
Journal: Science
December/12/1996
Abstract
Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.
Publication
Journal: Genes and Development
May/14/2003
Abstract
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.
Publication
Journal: Cell
November/18/2002
Abstract
The Period2 gene plays a key role in controlling circadian rhythm in mice. We report here that mice deficient in the mPer2 gene are cancer prone. After gamma radiation, these mice show a marked increase in tumor development and reduced apoptosis in thymocytes. The core circadian genes are induced by gamma radiation in wild-type mice but not in mPer2 mutant mice. Temporal expression of genes involved in cell cycle regulation and tumor suppression, such as Cyclin D1, Cyclin A, Mdm-2, and Gadd45alpha, is deregulated in mPer2 mutant mice. In particular, the transcription of c-myc is controlled directly by circadian regulators and is deregulated in the mPer2 mutant. Our studies suggest that the mPer2 gene functions in tumor suppression by regulating DNA damage-responsive pathways.
load more...