Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer PC-3 cells.
Journal: 2005/April - European Journal of Pharmacology
ISSN: 0014-2999
Abstract:
In our continuing search to discover bioactive compounds from natural products, we isolated six new clerodane diterpenes, caseamembrins A to F, from Casearia membranacea and examined their antiproliferative activities in human hormone-resistant prostate cancer PC-3 cells. All of these compounds displayed effective antiproliferative activity using sulforhodamine B assays and induced cell apoptosis by a terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)-reaction technique. The data demonstrated that caseamembrin C was the most effective compound among these clerodane diterpenoids. Caseamembrin C induced down-regulation of Bcl-2 and Bcl-xL expression, while up-regulation of proapoptotic protein Mcl-1S (short chain), suggesting that these Bcl-2 family member proteins may play a role on arbitrating the apoptotic cell death. Caseamembrin C also induced the up-regulation of Fas ligand (FasL) expression, cleavage and activation of caspase-8 and caspase-9, Bid cleavage and activation of executor caspase-3. However, z-IETD-FMK (Z-Ile-Glu-Thr-Asp-fluoromethyl ketone, a selective caspase-8 inhibitor) almost completely inhibited caseamembrin C-induced Bid cleavage without any modification of caspase-9 activation, indicating that the extrinsic pathway of FasL/caspase-8/Bid cascade only played a minor role in the apoptotic signaling. Taken together, it is suggested that caseamembrin C-induced apoptosis is predominantly through the activation of intrinsic apoptosis pathways by causing the down-regulation of Bcl-2 and Bcl-xL expression, up-regulation of Mcl-1S protein and activation of caspase-9 and caspase-3.
Relations:
Citations
(9)
Diseases
(1)
Chemicals
(12)
Organisms
(1)
Processes
(5)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.