A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression.
Journal: 2018/November - FASEB Journal
ISSN: 1530-6860
Abstract:
Hypercapnia, elevated levels of CO2 in the blood, is a known marker for poor clinical prognosis and is associated with increased mortality in patients hospitalized with both bacterial and viral pneumonias. Although studies have established a connection between elevated CO2 levels and poor pneumonia outcomes, a mechanistic basis of this association has not yet been established. We previously reported that hypercapnia inhibits expression of key NF-κB-regulated, innate immune cytokines, TNF-α, and IL-6, in LPS-stimulated macrophages in vitro and in mice during Pseudomonas pneumonia. The transcription factor heat shock factor 1 (HSF1) is important in maintaining proteostasis during stress and has been shown to negatively regulate NF-κB activity. In this study, we tested the hypothesis that HSF1 activation in response to hypercapnia results in attenuated NF-κB-regulated gene expression. We found that hypercapnia induced the protein expression and nuclear accumulation of HSF1 in primary murine alveolar macrophages and in an alveolar macrophage cell line (MH-S). In MH-S cells treated with short interfering RNA targeting Hsf1, LPS-induced IL-6 and TNF-α release were elevated during exposure to hypercapnia. Pseudomonas-infected Hsf1+/+ (wild-type) mice, maintained in a hypercapnic environment, showed lower levels of IL-6 and TNF-α in bronchoalveolar lavage fluid and IL-1β in lung tissue than did infected mice maintained in room air. In contrast, infected Hsf1+/- mice exposed to either hypercapnia or room air had similarly elevated levels of those cytokines. These results suggest that hypercapnia-mediated inhibition of NF-κB cytokine production is dependent on HSF1 expression and/or activation.-Lu, Z., Casalino-Matsuda, S. M., Nair, A., Buchbinder, A., Budinger, G. R. S., Sporn, P. H. S., Gates, K. L. A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression.
Relations:
Content
Citations
(4)
Similar articles
Articles by the same authors
Discussion board
FASEB J 32(7): 3614-3622

A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression

Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois, USA;
Universities of Giessen and Marburg Lung Center, Giessen, Germany
Correspondence: Northwestern University, Feinberg School of Medicine, 240 E. Huron, McGaw M-300, Chicago, IL 60611, USA., E-mail: ude.nretsewhtron@setag-k
Received 2017 Dec 4; Accepted 2018 Jan 22.

Abstract

Hypercapnia, elevated levels of CO2 in the blood, is a known marker for poor clinical prognosis and is associated with increased mortality in patients hospitalized with both bacterial and viral pneumonias. Although studies have established a connection between elevated CO2 levels and poor pneumonia outcomes, a mechanistic basis of this association has not yet been established. We previously reported that hypercapnia inhibits expression of key NF-κB–regulated, innate immune cytokines, TNF-α, and IL-6, in LPS-stimulated macrophages in vitro and in mice during Pseudomonas pneumonia. The transcription factor heat shock factor 1 (HSF1) is important in maintaining proteostasis during stress and has been shown to negatively regulate NF-κB activity. In this study, we tested the hypothesis that HSF1 activation in response to hypercapnia results in attenuated NF-κB–regulated gene expression. We found that hypercapnia induced the protein expression and nuclear accumulation of HSF1 in primary murine alveolar macrophages and in an alveolar macrophage cell line (MH-S). In MH-S cells treated with short interfering RNA targeting Hsf1, LPS-induced IL-6 and TNF-α release were elevated during exposure to hypercapnia. Pseudomonas-infected Hsf1+/+ (wild-type) mice, maintained in a hypercapnic environment, showed lower levels of IL-6 and TNF-α in bronchoalveolar lavage fluid and IL-1β in lung tissue than did infected mice maintained in room air. In contrast, infected Hsf1+/− mice exposed to either hypercapnia or room air had similarly elevated levels of those cytokines. These results suggest that hypercapnia-mediated inhibition of NF-κB cytokine production is dependent on HSF1 expression and/or activation.—Lu, Z., Casalino-Matsuda, S. M., Nair, A., Buchbinder, A., Budinger, G. R. S., Sporn, P. H. S., Gates, K. L. A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression.

Keywords: rodent, macrophage, bacterial infections, stress response, lung
Abstract

Hypercapnia, elevated levels of CO2 in the blood, has been recognized as a marker of poor prognosis in patients with chronic and/or severe lung diseases, such as chronic obstructive pulmonary disease and acute respiratory distress syndrome (17). Elevated CO2 levels are also associated with increased mortality in patients hospitalized with community-acquired bacterial and viral pneumonias (8, 9). Although clinical studies have established a connection between elevated CO2 levels and poor patient outcomes, they have not yet revealed the mechanistic basis for that association. Work from our laboratory and others, using both cell culture systems and in vivo animal models, supports the hypothesis that exposure to hypercapnia impairs the host’s innate immune response and host defense (1012).

In human and murine macrophages, we reported that hypercapnia attenuates the LPS-induced expression of TNF-α and IL-6– and NF-κB–regulated cytokines important for host defense in a pH-independent manner (11). We further showed that hypercapnia suppresses IL-6 and TNF-α expression in the lungs of mice infected with Pseudomonas aeruginosa, which is associated with increased mortality and impaired bacterial clearance (10). Interestingly, decreased expression of TNF-α, IL-6, and other NF-κB–regulated cytokines is also observed in macrophages exposed to “heat shock,” a modest increase in temperature of 1–2°C (1316).

Heat shock induces expression of heat shock proteins (HSPs), such as HSP70, which function as molecular chaperones that maintain proteostasis within the cell during stress-invoking stimuli, such as bacterial infections (17, 18). Induction of HSPs is a highly conserved response regulated by the transcription factor heat shock factor 1 (HSF1), which binds to heat shock elements in promoter regions of target genes (15, 16, 19). HSF1 has been shown to inhibit gene transcription of TNF-α, IL-6, and IL-1β, at least in part, by binding to heat shock elements in the promoter regions of those non–heat shock genes, highlighting the function of HSF1 as an integrator of stress responses in cells (16, 19, 20).

In this study, we show that hypercapnia activates HSF1 in murine macrophages. Knockdown of Hsf1 in a murine alveolar macrophage–like cell line (MH-S) prevents the hypercapnia-mediated inhibition of LPS-induced IL-6 and TNF-α expression. Consistent with these findings, we show that mice with reduced HSF1 expression (Hsf1+/−) are protected from hypercapnia-induced inhibition of IL-6, TNF-α, and IL-1β during Pseudomonas pneumonia. Taken together, these results suggest a previously unrecognized role for HSF1 as a mediator of CO2 signaling in LPS-stimulated murine macrophages and in the Pseudomonas-infected mouse lung.

n.s., not significant.

n.s., not significant.

ACKNOWLEDGMENTS

The authors thank Dr. Karen Ridge and Dr. Navdeep Chandel (both from Northwestern University) for advice, reagents, and technical assistance. The authors acknowledge support from the U.S. National Institutes of Health (NIH) National Heart, Lung, and Blood Institute (Grants K01 HL108860, R01 HL131745, and P01 HL071643), and NIH National Institute on Aging (Grant P01 AG049665). The authors declare no conflicts of interest.

ACKNOWLEDGMENTS

Glossary

ad-Luc1adenoviral vector encoding destabilized luciferase
BALbronchoalveolar lavage
HChypercapnia
HSF1heat shock transcription factor 1
HSPheat shock protein
IFimmunofluorescence
LDHlactate dehydrogenase
NCnormocapnia
PaCO2partial pressure of carbon dioxide in arterial blood
siRNAshort interfering RNA
Glossary

REFERENCES

REFERENCES

References

  • 1. Mohan A., , Premanand R., , Reddy L. N., , Rao M. H., , Sharma S. K., , Kamity R., , Bollineni S. (2006) Clinical presentation and predictors of outcome in patients with severe acute exacerbation of chronic obstructive pulmonary disease requiring admission to intensive care unit.BMC Pulm. Med.6, 27
  • 2. Budweiser S., , Jörres R. A., , Riedl T., , Heinemann F., , Hitzl A. P., , Windisch W., , Pfeifer M. (2007) Predictors of survival in COPD patients with chronic hypercapnic respiratory failure receiving noninvasive home ventilation.Chest131, 1650–1658 [[PubMed]
  • 3. MacIntyre N., , Huang Y. C. (2008) Acute exacerbations and respiratory failure in chronic obstructive pulmonary disease.Proc. Am. Thorac. Soc.5, 530–535
  • 4. Slenter R. H., , Sprooten R. T., , Kotz D., , Wesseling G., , Wouters E. F., , Rohde G. G. (2013) Predictors of 1-year mortality at hospital admission for acute exacerbations of chronic obstructive pulmonary disease.Respiration85, 15–26 [[PubMed]
  • 5. Mancebo J(1998) Permissive hypercapnia in ARDS.Intensive Care Med.24, 1339–1340 [[PubMed][Google Scholar]
  • 6. Tiruvoipati R., , Pilcher D., , Buscher H., , Botha J., , Bailey M(2017) Effects of hypercapnia and hypercapnic acidosis on hospital mortality in mechanically ventilated patients.Crit. Care Med.45, e649–e656 [[PubMed][Google Scholar]
  • 7. Nin N., , Muriel A., , Peñuelas O., , Brochard L., , Lorente J. A., , Ferguson N. D., , Raymondos K., , Ríos F., , Violi D. A., , Thille A. W., , González M., , Villagomez A. J., , Hurtado J., , Davies A. R., , Du B., , Maggiore S. M., , Soto L., , D’Empaire G., , Matamis D., , Abroug F., , Moreno R. P., , Soares M. A., , Arabi Y., , Sandi F., , Jibaja M., , Amin P., , Koh Y., , Kuiper M. A., , Bülow H. H., , Zeggwagh A. A., , Anzueto A., , Sznajder J. I., , Esteban A., ; VENTILA Group . (2017) Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome.Intensive Care Med.43, 200–208
  • 8. Sin D. D., , Man S. F., , Marrie T. J. (2005) Arterial carbon dioxide tension on admission as a marker of in-hospital mortality in community-acquired pneumonia.Am. J. Med.118, 145–150 [[PubMed]
  • 9. Murtagh P., , Giubergia V., , Viale D., , Bauer G., , Pena H. G. (2009) Lower respiratory infections by adenovirus in children: clinical features and risk factors for bronchiolitis obliterans and mortality.Pediatr. Pulmonol.44, 450–456 [[PubMed]
  • 10. Gates K. L., , Howell H. A., , Nair A., , Vohwinkel C. U., , Welch L. C., , Beitel G. J., , Hauser A. R., , Sznajder J. I., , Sporn P. H. (2013) Hypercapnia impairs lung neutrophil function and increases mortality in murine Pseudomonas pneumonia.Am. J. Respir. Cell Mol. Biol.49, 821–828
  • 11. Wang N., , Gates K. L., , Trejo H., , Favoreto S., Jr, ., Schleimer R. P., , Sznajder J. I., , Beitel G. J., , Sporn P. H. (2010) Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage.FASEB J.24, 2178–2190
  • 12. Cummins E. P., , Oliver K. M., , Lenihan C. R., , Fitzpatrick S. F., , Bruning U., , Scholz C. C., , Slattery C., , Leonard M. O., , McLoughlin P., , Taylor C. T. (2010) NF-κB links CO2 sensing to innate immunity and inflammation in mammalian cells.J. Immunol.185, 4439–4445 [[PubMed]
  • 13. Hagiwara S., , Iwasaka H., , Matsumoto S., , Noguchi T(2007) Changes in cell culture temperature alter release of inflammatory mediators in murine macrophagic RAW264.7 cells.Inflamm. Res.56, 297–303 [[PubMed][Google Scholar]
  • 14. Takii R., , Inouye S., , Fujimoto M., , Nakamura T., , Shinkawa T., , Prakasam R., , Tan K., , Hayashida N., , Ichikawa H., , Hai T., , Nakai A(2010) Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3.J. Immunol.184, 1041–1048 [[PubMed][Google Scholar]
  • 15. Inouye S., , Fujimoto M., , Nakamura T., , Takaki E., , Hayashida N., , Hai T., , Nakai A(2007) Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor.J. Biol. Chem.282, 33210–33217 [[PubMed][Google Scholar]
  • 16. Singh I. S., , Viscardi R. M., , Kalvakolanu I., , Calderwood S., , Hasday J. D. (2000) Inhibition of tumor necrosis factor-α transcription in macrophages exposed to febrile range temperature: a possible role for heat shock factor-1 as a negative transcriptional regulator.J. Biol. Chem.275, 9841–9848 [[PubMed]
  • 17. Young P. J., , Saxena M. (2014) Fever management in intensive care patients with infections.Crit. Care18, 206
  • 18. Akerfelt M., , Vihervaara A., , Laiho A., , Conter A., , Christians E. S., , Sistonen L., , Henriksson E. (2010) Heat shock transcription factor 1 localizes to sex chromatin during meiotic repression.J. Biol. Chem.285, 34469–34476
  • 19. Vihervaara A., , Sistonen L(2014) HSF1 at a glance.J. Cell Sci.127, 261–266 [[PubMed][Google Scholar]
  • 20. Wirth D., , Bureau F., , Melotte D., , Christians E., , Gustin P(2004) Evidence for a role of heat shock factor 1 in inhibition of NF-κB pathway during heat shock response-mediated lung protection.Am. J. Physiol. Lung Cell. Mol. Physiol.287, L953–L961 [[PubMed][Google Scholar]
  • 21. Gupta R., , Kasturi P., , Bracher A., , Loew C., , Zheng M., , Villella A., , Garza D., , Hartl F. U., , Raychaudhuri S. (2011) Firefly luciferase mutants as sensors of proteome stress.Nat. Methods8, 879–884 [[PubMed]
  • 22. Budinger G. R., , Mutlu G. M., , Urich D., , Soberanes S., , Buccellato L. J., , Hawkins K., , Chiarella S. E., , Radigan K. A., , Eisenbart J., , Agrawal H., , Berkelhamer S., , Hekimi S., , Zhang J., , Perlman H., , Schumacker P. T., , Jain M., , Chandel N. S. (2011) Epithelial cell death is an important contributor to oxidant-mediated acute lung injury.Am. J. Respir. Crit. Care Med.183, 1043–1054
  • 23. Comolli J. C., , Hauser A. R., , Waite L., , Whitchurch C. B., , Mattick J. S., , Engel J. N. (1999) Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia.Infect. Immun.67, 3625–3630
  • 24. Frydman J., , Nimmesgern E., , Ohtsuka K., , Hartl F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones.Nature370, 111–117 [[PubMed]
  • 25. Soberanes S., , Urich D., , Baker C. M., , Burgess Z., , Chiarella S. E., , Bell E. L., , Ghio A. J., , De Vizcaya-Ruiz A., , Liu J., , Ridge K. M., , Kamp D. W., , Chandel N. S., , Schumacker P. T., , Mutlu G. M., , Budinger G. R. (2009) Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution.J. Biol. Chem.284, 2176–2186
  • 26. O’Croinin D. F., , Nichol A. D., , Hopkins N., , Boylan J., , O’Brien S., , O’Connor C., , Laffey J. G., , McLoughlin P. (2008) Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury.Crit. Care Med.36, 2128–2135 [[PubMed]
  • 27. Singh V., , Aballay A(2006) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity.Proc. Natl. Acad. Sci. USA103, 13092–13097 [Google Scholar]
  • 28. Singh V., , Aballay A(2006) Heat shock and genetic activation of HSF-1 enhance immunity to bacteria.Cell Cycle5, 2443–2446 [[PubMed][Google Scholar]
  • 29. Murapa P., , Ward M. R., , Gandhapudi S. K., , Woodward J. G., , D’Orazio S. E. (2011) Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor α during fever.Infect. Immun.79, 177–184
  • 30. Gally F., , Minor M. N., , Smith S. K., , Case S. R., , Chu H. W. (2012) Heat shock factor 1 protects against lung mycoplasma pneumoniae infection in mice.J. Innate Immun.4, 59–68
  • 31. Gupta A., , Cooper Z. A., , Tulapurkar M. E., , Potla R., , Maity T., , Hasday J. D., , Singh I. S. (2013) Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release.J. Biol. Chem.288, 2756–2766
  • 32. Song M., , Pinsky M. R., , Kellum J. A. (2008) Heat shock factor 1 inhibits nuclear factor-κB nuclear binding activity during endotoxin tolerance and heat shock.J. Crit. Care23, 406–415 [[PubMed]
  • 33. Sun D., , Chen D., , Du B., , Pan J(2005) Heat shock response inhibits NF-κB activation and cytokine production in murine Kupffer cells.J. Surg. Res.129, 114–121 [[PubMed][Google Scholar]
  • 34. Macario A. J., , Conway de Macario E. (2005) Sick chaperones, cellular stress, and disease.N. Engl. J. Med.353, 1489–1501 [[PubMed]
  • 35. Mosser D. D., , Kotzbauer P. T., , Sarge K. D., , Morimoto R. I. (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation.Proc. Natl. Acad. Sci. USA87, 3748–3752
  • 36. Helenius I. T., , Krupinski T., , Turnbull D. W., , Gruenbaum Y., , Silverman N., , Johnson E. A., , Sporn P. H., , Sznajder J. I., , Beitel G. J. (2009) Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection.Proc. Natl. Acad. Sci. USA106, 18710–18715
  • 37. Nichol A. D., , O’Cronin D. F., , Howell K., , Naughton F., , O’Brien S., , Boylan J., , O’Connor C., , O’Toole D., , Laffey J. G., , McLoughlin P. (2009) Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis.Crit. Care Med.37, 2953–2961 [[PubMed]
  • 38. Singh I. S., , He J. R., , Calderwood S., , Hasday J. D. (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-α gene is a transcriptional repressor.J. Biol. Chem.277, 4981–4988 [[PubMed]
  • 39. Hahn J. S., , Hu Z., , Thiele D. J., , Iyer V. R. (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor.Mol. Cell. Biol.24, 5249–5256
  • 40. Gonsalves S. E., , Moses A. M., , Razak Z., , Robert F., , Westwood J. T. (2011) Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.PLoS One6, e15934
  • 41. Mendillo M. L., , Santagata S., , Koeva M., , Bell G. W., , Hu R., , Tamimi R. M., , Fraenkel E., , Ince T. A., , Whitesell L., , Lindquist S. (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers.Cell150, 549–562
  • 42. Xie Y., , Chen C., , Stevenson M. A., , Auron P. E., , Calderwood S. K. (2002) Heat shock factor 1 represses transcription of the IL-1β gene through physical interaction with the nuclear factor of interleukin 6.J. Biol. Chem.277, 11802–11810 [[PubMed]
  • 43. Dayalan Naidu S., , Kostov R. V., , Dinkova-Kostova A. T. (2015) Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection.Trends Pharmacol. Sci.36, 6–14 [[PubMed]
  • 44. Helenius I. T., , Haake R. J., , Kwon Y. J., , Hu J. A., , Krupinski T., , Casalino-Matsuda S. M., , Sporn P. H. S., , Sznajder J. I., , Beitel G. J. (2016) Identification of Drosophila Zfh2 as a mediator of hypercapnic immune regulation by a genome-wide RNA interference screen.J. Immunol.196, 655–667
  • 45. Hentze N., , Le Breton L., , Wiesner J., , Kempf G., , Mayer M. P. (2016) Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1.Elife5, e11578
  • 46. Kim H. P., , Wang X., , Zhang J., , Suh G. Y., , Benjamin I. J., , Ryter S. W., , Choi A. M. (2005) Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 β MAPK and heat shock factor-1.J. Immunol.175, 2622–2629 [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.