Nucleotide sequence of a segment of Drosophila mitochondrial DNA that contains the genes for cytochrome c oxidase subunits II and III and ATPase subunit 6.
Journal: 1983/August - Nucleic Acids Research
ISSN: 0305-1048
PUBMED: 6306579
Abstract:
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba has been determined, within which have been identified the genes for tRNAleuUUR, cytochrome c oxidase subunit II (COII), tRNAlys, tRNAasp, URFA6L, ATPase subunit 6 (ATPase6), cytochrome c oxidase subunit III (COIII) and tRNAgly. The genes are arranged in the order given and all are transcribed from the same strand of the molecule in a direction opposite to that in which replication proceeds around the molecule. The tRNAlys gene is unusual among mitochondrial tRNAlys genes in that it contains a CTT anticodon. The triplet AGA is used to specify an amino acid in all of the COII, COIII, ATPase6, and URFA6L genes. However, the AGA codons found in these four polypeptide genes correspond in position to codons which specify nine different amino acids, but never arginine, in the equivalent polypeptide gene which have been sequenced from mtDNAs of mouse, yeast and Zea mays.
Relations:
Content
Citations
(22)
References
(35)
Grants
(8)
Drugs
(1)
Chemicals
(3)
Organisms
(2)
Processes
(2)
Similar articles
Articles by the same authors
Discussion board
Nucleic Acids Res 11(12): 4211-4227

Nucleotide sequence of a segment of Drosophila mitochondrial DNA that contains the genes for cytochrome c oxidase subunits II and III and ATPase subunit 6.

Abstract

The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba has been determined, within which have been identified the genes for tRNAleuUUR, cytochrome c oxidase subunit II (COII), tRNAlys, tRNAasp, URFA6L, ATPase subunit 6 (ATPase6), cytochrome c oxidase subunit III (COIII) and tRNAgly. The genes are arranged in the order given and all are transcribed from the same strand of the molecule in a direction opposite to that in which replication proceeds around the molecule. The tRNAlys gene is unusual among mitochondrial tRNAlys genes in that it contains a CTT anticodon. The triplet AGA is used to specify an amino acid in all of the COII, COIII, ATPase6, and URFA6L genes. However, the AGA codons found in these four polypeptide genes correspond in position to codons which specify nine different amino acids, but never arginine, in the equivalent polypeptide gene which have been sequenced from mtDNAs of mouse, yeast and Zea mays.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fauron CM, Wolstenholme DR. Structural heterogeneity of mitochondrial DNA molecules within the genus Drosophila. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3623–3627.[PMC free article] [PubMed] [Google Scholar]
  • Fauron CM, Wolstenholme DR. Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res. 1980 Jun 11;8(11):2439–2452.[PMC free article] [PubMed] [Google Scholar]
  • Goddard JM, Wolstenholme DR. Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3886–3890.[PMC free article] [PubMed] [Google Scholar]
  • Clary DO, Goddard JM, Martin SC, Fauron CM, Wolstenholme DR. Drosophila mitochondrial DNA: a novel gene order. Nucleic Acids Res. 1982 Nov 11;10(21):6619–6637.[PMC free article] [PubMed] [Google Scholar]
  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. [PubMed] [Google Scholar]
  • Anderson S, de Bruijn MH, Coulson AR, Eperon IC, Sanger F, Young IG. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. [PubMed] [Google Scholar]
  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. [PubMed] [Google Scholar]
  • Holmes DS, Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. [PubMed] [Google Scholar]
  • Hong GF. A systemic DNA sequencing strategy. J Mol Biol. 1982 Jul 5;158(3):539–549. [PubMed] [Google Scholar]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467.[PMC free article] [PubMed] [Google Scholar]
  • Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res. 1982 Aug 11;10(15):4731–4751.[PMC free article] [PubMed] [Google Scholar]
  • Staden R. A computer program to search for tRNA genes. Nucleic Acids Res. 1980 Feb 25;8(4):817–825.[PMC free article] [PubMed] [Google Scholar]
  • Brutlag DL, Clayton J, Friedland P, Kedes LH. SEQ: a nucleotide sequence analysis and recombination system. Nucleic Acids Res. 1982 Jan 11;10(1):279–294.[PMC free article] [PubMed] [Google Scholar]
  • Jue RA, Woodbury NW, Doolittle RF. Sequence homologies among E. coli ribosomal proteins: evidence for evolutionarily related groupings and internal duplications. J Mol Evol. 1980 May;15(2):129–148. [PubMed] [Google Scholar]
  • Doolittle RF. Similar amino acid sequences: chance or common ancestry? Science. 1981 Oct 9;214(4517):149–159. [PubMed] [Google Scholar]
  • Clary DO, Wahleithner JA, Wolstenholme DR. Transfer RNA genes in Drosophila mitochondrial DNA: related 5' flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res. 1983 Apr 25;11(8):2411–2425.[PMC free article] [PubMed] [Google Scholar]
  • Coruzzi G, Tzagoloff A. Assembly of the mitochondrial membrane system. DNA sequence of subunit 2 of yeast cytochrome oxidase. J Biol Chem. 1979 Sep 25;254(18):9324–9330. [PubMed] [Google Scholar]
  • Fox TD. Five TGA "stop" codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6534–6538.[PMC free article] [PubMed] [Google Scholar]
  • Thalenfeld BE, Tzagoloff A. Assembly of the mitochondrial membrane system. Sequence of the oxi 2 gene of yeast mitochondrial DNA. J Biol Chem. 1980 Jul 10;255(13):6173–6180. [PubMed] [Google Scholar]
  • Macino G, Tzagoloff A. Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci. Cell. 1980 Jun;20(2):507–517. [PubMed] [Google Scholar]
  • Fox TD, Leaver CJ. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell. 1981 Nov;26(3 Pt 1):315–323. [PubMed] [Google Scholar]
  • Steffens GJ, Buse G. Studies on cytochrome c oxidase, IV[1--3]. Primary structure and function of subunit II. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):613–619. [PubMed] [Google Scholar]
  • Netzker R, Köchel HG, Basak N, Küntzel H. Nucleotide sequence of Aspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four tRNAs and L-rRNA. Nucleic Acids Res. 1982 Aug 11;10(15):4783–4794.[PMC free article] [PubMed] [Google Scholar]
  • Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981 Apr 9;290(5806):470–474. [PubMed] [Google Scholar]
  • Gauss DH, Sprinzl M. Compilation of tRNA sequences. Nucleic Acids Res. 1983 Jan 11;11(1):r1–53.[PMC free article] [PubMed] [Google Scholar]
  • Gauss DH, Sprinzl M. Compilation of sequences of tRNA genes. Nucleic Acids Res. 1983 Jan 11;11(1):r55–103.[PMC free article] [PubMed] [Google Scholar]
  • DeFranco D, Schmidt O, Söll D. Two control regions for eukaryotic tRNA gene transcription. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3365–3368.[PMC free article] [PubMed] [Google Scholar]
  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A. Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3167–3170.[PMC free article] [PubMed] [Google Scholar]
  • Köchel HG, Lazarus CM, Basak N, Küntzel H. Mitochondrial tRNA gene clusters in Aspergillus nidulans: organization and nucleotide sequence. Cell. 1981 Feb;23(2):625–633. [PubMed] [Google Scholar]
  • Barrell BG, Bankier AT, Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–194. [PubMed] [Google Scholar]
  • Barrell BG, Anderson S, Bankier AT, de Bruijn MH, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, et al. Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3164–3166.[PMC free article] [PubMed] [Google Scholar]
  • Heckman JE, Sarnoff J, Alzner-DeWeerd B, Yin S, RajBhandary UL. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3159–3163.[PMC free article] [PubMed] [Google Scholar]
  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. J Biol Chem. 1980 Dec 25;255(24):11927–11941. [PubMed] [Google Scholar]
  • Coruzzi G, Bonitz SG, Thalenfeld BE, Tzagoloff A. Assembly of the mitochondrial membrane system. Analysis of the nucleotide sequence and transcripts in the oxi1 region of yeast mitochondrial DNA. J Biol Chem. 1981 Dec 25;256(24):12780–12787. [PubMed] [Google Scholar]
  • Hudspeth ME, Ainley WM, Shumard DS, Butow RA, Grossman LI. Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell. 1982 Sep;30(2):617–626. [PubMed] [Google Scholar]
Abstract
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba has been determined, within which have been identified the genes for tRNAleuUUR, cytochrome c oxidase subunit II (COII), tRNAlys, tRNAasp, URFA6L, ATPase subunit 6 (ATPase6), cytochrome c oxidase subunit III (COIII) and tRNAgly. The genes are arranged in the order given and all are transcribed from the same strand of the molecule in a direction opposite to that in which replication proceeds around the molecule. The tRNAlys gene is unusual among mitochondrial tRNAlys genes in that it contains a CTT anticodon. The triplet AGA is used to specify an amino acid in all of the COII, COIII, ATPase6, and URFA6L genes. However, the AGA codons found in these four polypeptide genes correspond in position to codons which specify nine different amino acids, but never arginine, in the equivalent polypeptide gene which have been sequenced from mtDNAs of mouse, yeast and Zea mays.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.