Novel quinolone CHM-1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell line.
Journal: 2010/September - Journal of Orthopaedic Research
ISSN: 1554-527X
Abstract:
Novel 2-phenyl-4-quinolone compounds have potent cytotoxic effects on different human cancer cell lines. In this study, we examined anticancer activity and mechanisms of 20-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone (CHM-1) in human osterogenic sarcoma U-2 OS cells. CHM-1-induced apoptosis was determined by flow cytometric analysis, DAPI staining, Comet assay, and caspase inhibitors. CHM-1-inhibited cell migration and invasion was assessed by a wound healing assay, gelatin zymography, and a Transwell assay. The mechanisms of CHM-1 effects on apoptosis and metastasis signaling pathways were studied using Western blotting and gene expression. CHM-1 induced G2/M arrest and apoptosis at an IC(50) (3 microM) in U-2 OS cells and caspase-3, -8, and -9 were activated. Caspase inhibitors increased cell viability after exposure to CHM-1. CHM-1-induced apoptosis was associated with enhanced ROS generation, DNA damage, decreased DeltaPsi(m) levels, and promotion of mitochondrial cytochrome c release. CHM-1 stimulated mRNA expression of caspase-3, -8, and -9, AIF, and Endo G. In addition, CHM-1 inhibited cell metastasis at a low concentration (<3 microM). CHM-1 inhibited the cell metastasis through the inhibition of MMP-2, -7, and -9. CHM-1 also decreased the levels of MAPK signaling pathways before leading to the inhibition of MMPs. In summary, CHM-1 is a potent inducer of apoptosis, which plays a role in the anticancer activity of CHM-1.
Relations:
Citations
(9)
Diseases
(2)
Chemicals
(9)
Organisms
(1)
Processes
(5)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.