Inhibitory effect of herbal remedy PERVIVO and anti-inflammatory drug sulindac on L-1 sarcoma tumor growth and tumor angiogenesis in Balb/c mice.
Journal: 2014/February - Mediators of Inflammation
ISSN: 1466-1861
Abstract:
Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.
Relations:
Content
Citations
(1)
References
(70)
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(6)
Organisms
(4)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Mediators of Inflammation. Dec/31/2012; 2013
Published online Jun/26/2013

Inhibitory Effect of Herbal Remedy PERVIVO and Anti-Inflammatory Drug Sulindac on L-1 Sarcoma Tumor Growth and Tumor Angiogenesis in Balb/c Mice

Abstract

Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.

1. Introduction

Tumor angiogenesis, the development of new blood vessels within the primary tumor or in metastasis hotspots, is an essential process for the growth and progression of metastases. Both innate and adaptive immune systems are involved in positive and negative regulations of this process. All over the world various research teams are conducting studies to find agents, which could potentially be able to inhibit the process. Despite the discovery of many such agents, the need for further research exists, because the angiogenesis inhibitors obtained so far are either very costly to synthesize, or they exhibit a number of side effects. Angiogenesis is a complex process with many contributing factors and one regulated by endogenic stimulators and inhibitors. Among the scientists involved in such studies a common conviction exists; that is the single angioinhibitors are not able to suppress the process effectively. Most antiangiogenic natural health products block new vessel formation at multiple molecular levels. Thus the need to recourse to low-toxic vegetal compounds and studies of combined effects of a few low-dosage compounds with different modes of action on the processes of angiogenesis in tumor growth. Many phytochemicals and diet derivatives are able to exert chemopreventive and antitumor activity targeting the tumor environment and inflammatory angiogenesis [13].

PERVIVO is a digestive herbal remedy, mixture of 27 herbs alcoholic extracts dissolved in 32% ethyl alcohol, some of them traditionally used as anti-inflammatory agents also possessing antimicrobial or anti-tumor properties. We were the first to show angioinhibitory effect of this remedy in local cutaneous model of tumor angiogenesis [4]. The most important anti-tumor substance in PERVIVO is Radix zingiberis (ginger). Ginger has a long history of medicinal use dating back 2500 years. The anticancer properties of ginger are connected mainly with gingerols, shogaols, and zingerone [5]. 6-gingerol, a natural component of ginger, was shown to inhibit growth of colon cancer cells via induction of G2/M arrest [6]. The second ginger component, 6-shogaol, induced apoptosis in human hepatocellular carcinoma cells and exhibited anti-tumor activity in vivo through endoplasmic reticulum stress [7]. Ginger treatment suppressed the proliferation and colony formation in breast cancer cell lines [8]. Chakraborty et al. observed the in vitro effect of 6-gingerol on HeLa cells. Their results suggest that 6-gingerol has potential to bind with DNA and induce cell death by autophagy and caspase-3-mediated apoptosis [9]. Silva et al. demonstrated specific antiproliferative activities of gingerols against MDA-MB-231 tumor cell line [5]. Shogaols are dehydration products of corresponding gingerols during storage or thermal processing. Shogaols have stronger inhibitory effect than gingerols on growth of cancer cells, arachidonic acid release, and nitric oxide (NO) synthesis [10]. In experiments of Weng et al. both 6-shogaol and 6-gingerol effectively inhibited invasion and metastasis of hepatocellular carcinoma but through diverse molecular mechanisms. Both of them regulate MMP-2/-9 transcription. 6-Gingerol directly decreased expression of urokinase plasminogen activator and 6-shogaol indirectly by upregulation plasminogen activator inhibitor [11] and via blockade of nuclear factor-κB activation [12].

It was also documented that ginger and its compounds inhibit angiogenesis in vitro and in vivo [1315].

The next PERVIVO ingredient, Artemisia absinthium, inhibited TNF alpha production and accelerated healing of patients with Crohn's disease [16]. Artemisinin, active antimalarial compound isolated from herbs belonging to Artemisia species, dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, and hispidulin, small flavonoid from Artemisia vestita, inhibited growth of pancreatic, prostate, and ovarian cancer cells and were shown to be cytotoxic to cancer cells through induction of apoptosis. The antiangiogenic effect of artemisinin in vitro and in vivo was also described [1725].

The claims concerning anti-tumor activity of some other PERVIVO compounds are not largely supported by scientific evidence as yet. Radix Angelicae sinensis is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Cytotoxicity against tumor cell lines of its extracts, epigenetic modifications of cancer oncogenes, and tumor suppressor genes were described. It was also reported that Radix Angelicae sinensis may be a potential source of glutathione S-transferase inhibitors and counteract multidrug resistance [2630]. One report described antiproliferative activity of Gentiana triflora root extract on cultured and implanted tumor cells [29]. Fruit oils of Litsea cubeba from Taiwan exhibited cytotoxic activity against human lung, liver, and oral cancer cells in vitro [30, 31]. Galangin, flavonol present in Alpinia galanga rhizome, induced apoptosis of cancer cells [32, 33]. Extract of Radix Liquiritiae (licoricidin from Glycyrrhiza uralensis) inhibited the metastatic potential of human prostate cancer cells [34].

Most components of PERVIVO possess antimicrobial activity. Essential oil and decoction of Carlinae Radix (Carlina acanthifolia L.) showed significant antimicrobial effect against Staphylococcus aureus [35]. Compounds from Artemisia are antiplasmodial and antitrypanosomal drugs, and could be an alternative drug against trichinellosis [3638]. Compounds from Alpinia galanga are potent inhibitors for the influenza virus replication [39] and exhibit significant activity in vitro against promastigotes of Leishmania donovani [40]. Phenylpropanoids of Alpinia galanga was efflux pump inhibitors in Mycobacterium smegmatis mc2 155 cells [41]. Essential oils from Litsea cubeba contain fungicidal and antibacterial terpenoids [42, 43]. Sesquiterpene lactones from Inula helenium root essential oil exhibited antistaphylococcal activity [44].

Epidemiological studies have suggested that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the risk of cancer. Numerous studies have been devoted to the action of such anti-inflammatory agents as aspirin, indomethacin, piroxicam, and sulindac. The anticancer effect of NSAIDs was mainly found to result from their proapoptotic and antiproliferative effects which, therefore, restrict tumorigenesis [4549].

We were the first to show that sulindac and its metabolites (sulindac sulfone and sulindac sulphide), described previously by other authors as pro-apoptotic anticancer drugs [50, 51], inhibit tumor growth and angiogenesis induced in mice skin by cells isolated from murine L-1 sarcoma as well as angiogenesis induced by cells collected from human kidney and pulmonary cancers [5255]. The aim of the present work was to study the combined in vivo effect of multicomponent herbal remedy PERVIVO and non-steroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice. These effects were checked after grafting of cells collected from syngeneic sarcoma L-1 tumors into mice skin.

2. Material and Methods

2.1. Drugs

PERVIVO (Richard Bittner GmbH, Weitensfeld, Austria) is herbal remedy composed of 27 herbal extracts dissolved in 32% ethyl alcohol (Table 1). Sulindac (Sudaklin, Polpharma SA, Starogard Gdański, Poland) is nonsteroidal anti-inflammatory drug.

2.2. Mice

The study was performed on female, 8–10-week old inbred Balb/c mice, about 20 g of body mass, delivered from the Polish Academy of Sciences Breeding Colony. For all performed experiments animals were handled according to the Polish law on the protection of animals and NIH (National Institutes of Health) standards. All experiments were accepted and conducted according to ethical guidance of Local Bioethical Committee. Mice were housed 4-5 per cage and maintained under conventional conditions (room temperature 22.5–23.0°C, relative humidity 50–70%, and 12 h day/night cycle) with free access to standard rodent diet and water.

2.3. Sarcoma L-1 Tumor Cells

L-1 sarcoma cells from in vitro culture stock were delivered from Warsaw's Oncology Center collection, passaged in vivo, and grafted subcutaneously (for evaluation of tumor growth) or intradermally (for evaluation of angiogenic activity) to syngeneic Balb/c mice.

2.4. Treatment of Mice with PERVIVO and/or Sulindac

Mice received orally by Eppendorff pipette 20 μL of PERVIVO with 20 μL of water, or sulindac 0.6 mg, both drugs, for 3 days in cutaneous tumor-induced angiogenesis (TIA) test or for 14 days in evaluation of the effect of drugs on tumor growth. These doses correspond to 10 mL of PERVIVO and 300 mg of sulindac given to 70 kg person (applying the counter 7 for differences between mouse and human in relation of the surface to body mass). Control mice were fed with 40 μL of 16% ethyl alcohol.

2.5. Preparation of Tumor Cells after In Vivo Passage

Briefly, sarcoma L-1 cells from in vitro stock were grafted (106/0.1 mL) subcutaneously into subscapular region of Balb/c mice. After 14 days, the tumors were excised, cut to smaller pieces, rubbed through sieve, and suspended in 5 mL of PBS. The suspension was left for 10 min at room temperature.

After sedimentation, the supernatant was collected and centrifuged for 10 min at 1500 rpm. Obtained sarcoma cells were washed once with PBS for 10 min, then centrifuged at 1500 rpm, and resuspended in Parker medium in concentration of 4 × 106 cells/mL (for tumor-induced angiogenesis) or 107 cells/mL (for experiments with tumor growth). Viability of cells was about 95% of living cells as estimated by trypan-blue method.

2.6. Cutaneous Angiogenesis Assay (Tumor-Induced Angiogenesis (TIA) Test)

Multiple 0.05 mL samples of 200 thousands of cells were injected intradermally into partly shaved, narcotised Balb/c mice (at least 3-4 mice per group). In order to facilitate the localization of cell injection sites later on, the suspension was colored with 0.1% of trypan blue. Mice were fed with drugs for 3 days. After 72 hours, mice were sacrificed with lethal dose of Morbital (Biowet, Puławy). All newly formed blood vessels were identified and counted in dissection microscope, on the inner skin surface, at magnification of 6x, in 1/3 central area of microscopic field. Identification was based on the fact that the new blood vessels are thin, directed to the point of cells injection and (or) differ from the background vasculature in their tortuosity and divarications (Figure 1).

All experiments were performed in anaesthesia (3.6% chloral hydrate, Sigma-Aldrich), 0.1 mL per 10 g of body mass.

2.7. Subcutaneous Tumor Growth Assay

Suspensions of sarcoma cells were grafted (2 millions of cells) subcutaneously into mice. On the day of cells grafting and on the following 13 days mice were fed PERVIVO, sulindac, PERVIVO and sulindac, or diluted ethyl alcohol as a control. Mice were observed during these days, with number of appearing tumors noted at 7, 9, and 11 days after grafting. At days 9 and 14 the tumors volume was measured with electronic caliper (The Fowler Ultra-Cal Mark III caliper). After 14 days mice were sacrificed.

2.8. Morphological Examination

Morphological examination was done using light-microscopic analysis. Immediately after resection, tumor specimens were fixed in 10% formaldehyde solution. After fixation the specimens were dehydrated in increased concentration of alcohol and embedded in paraffin. Paraffin tissue block was sectioned on 4 μm thin sections. The specimens were stained by hematoxyline and eosine.

2.8.1. Statistical Evaluation of the Results

Evaluation of the results was performed by chi-square test and one-way ANOVA with Bartlett's test for equal variances, and the significance of differences between the groups was verified with a Bonferroni Multiple Posttest (GraphPad Prism).

3. Results

Histological examination revealed no major differences between tumors collected from control and experimental groups of mice. The dominant picture was mass of poorly differentiated atypical cells with features of sarcoma. As shown in Figure 2 and Table 2 the number of newly formed vessels that were induced by the tumor presence was decreased both by PERVIVO and sulindac, with the effect of sulindac comparatively stronger. Joint application of both drugs resulted in even stronger effect than treatment with separate compounds. The influence of the study drugs on measurable tumor emergence in respective days after sarcoma load inoculation is shown in Figure 3 and Table 3. Similar to the antiangiogenic effect, the influence of sulindac alone was greater than this by PERVIVO, and the common appliance of both drugs resulted in even greater delay in measurable tumor appearance. The time of the strongest impediment of tumor growth was similar in case of all study settings (day 7). The effect was intermittent, and only after application of both drugs together, the measurable tumors have not developed in all animals.

The influence of the study drugs on the mean tumor volume at the respective study time points is shown in Figures 4 and 5. The mean volume was statistically significantly lower at day 9 after administration of sulindac and, to the lesser extent, by both drugs (Table 4). The effect was not clearly defined in the case of PERVIVO. The mean tumor volume was lower than in placebo group but the difference was not significant. At day 14 only in the group that received both drugs the mean tumor volume was significantly lower compared to the placebo (Figure 5 and Table 5).

4. Discussion

L-1 sarcoma tumor arose spontaneously in the lung of Balb/c mouse and was described by Przemysław Janik from Warsaw Oncology Center (58). This tumor has been maintained since then by subcutaneous serial passages in Balb/c mice and frozen and stored in Warsaw Oncology Center Tissue Collection. Isolated L-1 cells from tumors were adapted to grow in vitro.

L-1 sarcoma cells from culture, after grafting to animals, form tumors in in vivo conditions.

L-1 sarcoma is a perfect experimental model for assessing the impact of various substances upon the tumor growth and activity of its cells.

Previously, we used L-1 sarcoma cells for evaluation of pro- and antiangiogenic activity of various substances of synthetic and natural origin. We were the first to report the anti-angiogenic activity of sulindac and its metabolites, as well as that of theobromine, catechins in the cacao tree seeds, salidroside and rosavin isolated from the Rhodiola rosea and the Rhodiola quadrifida, convallamaroside isolated from the Convallaria majalis rhizome, alkylglycerols found in the shark liver oil, and other substances of natural origin [5662].

We also demonstrated inhibitory effect of these substances in the angiogenic reaction induced in the mouse skin by cells or tissue homogenates obtained from surgically removed human cancers of the lung, kidney, ovary, and urinary bladder. We also proved the synergic anti-angiogenic activity of particular combinations of synthetic and natural inhibitors in relation to the reaction induced in mice skin with the human serum. We demonstrated the synergic activity of small doses of sulindac, convallamaroside, ursolic acid and epigallocatechin gallate (EGCG) in inhibition of cutaneous angiogenesis induced in mice by intracutaneous administration of serum obtained from patients with diabetic retinopathy. Additionally, we demonstrated that human recombined cytokines (VEGF, bFGF, IL-8, and IL-18) induced the cutaneous angiogenesis inhibited by natural and synthetic inhibitors. Sulindac and its metabolites inhibited angiogenesis induced by bFGF and IL-18 and did not affect the angiogenic VEGF and IL-8 activity [63, 64].

Our experience, dealing with the question of angiogenic inhibitors, indicates that it is crucial to use simultaneously multiple anti-angiogenic factors of different handle points in the treatment. Many inhibitors display a synergic activity; therefore, their appropriate combinations may significantly reduce drugs doses and their possible side effects [65]. One of the examples of remarkable synergistic effect is inhibition of both the neovascularization and growth of tumor in head and neck squamous cell carcinoma by retinoic acid and interferon alfa by different mechanisms of action. Tumor cells treated by interferon alfa stopped secretion of interleukin 8, the major angiogenic factor, while retinoic acid caused them to secrete an inhibitor of angiogenesis [66]. There is also a proof for synergism between cyclooxygenase inhibitors and cytotoxic chemotherapy drugs in inhibition of angiogenesis. Both celecoxib and 5-fluorouracil impaired angiogenesis by inhibiting vascular endothelial growth factor (VEGF). Additionally celecoxib influenced interferon gamma that has a pivotal role in tumor suppression [67]. Thalidomide has shown synergistic effect with low, nontoxic dose of cisplatin. It was shown that this effect is related to antiangiogenic influence of thalidomide on different tumor-related mediators: VEGF, basic fibroblast growth factor, hepatocyte growth factor, and IL-8 [68]. All evidence, of which examples are noted above, may lead to the concept of integrative approach of managing a patient with cancer. Cytotoxic drugs that are used as “golden standard” in cancer chemotherapy currently have high toxicity in therapeutic doses. The research is ongoing on combining them with compounds that target multiple biochemical pathways in processes that promote different aspects of cancer development, angiogenesis being one of the most important. These are i.a. natural health products that may be used as biological response modifiers and adaptogens, providing quality assurance of extracts is assured, and the effectiveness of combinations is proved in clinical trials.

We described inhibitory in vivo effect of two combinations of natural substances on angiogenesis and L-1 sarcoma growth in Balb/c mice. First of them was a composition of two Scandinavian folk medicine products, Greenland shark liver oil (rich in alkoxyglycerols) and arctic birch ashes, supplemented with squalene. All these substances alone and in combination significantly diminished cutaneous angiogenesis induced by tumor cells and tumor growth [69]. The second remedy composed of Echinacea purpurea extract, Allium sativum extract, and cocoa [70]. Again, a significant inhibitory effect on tumor angiogenesis and L-1 sarcoma growth was observed.

Other authors reported enhancing effect of theanine, a component of green tea leaves, on the antitumor activity of adriamycin [71], inhibition of liver metastasis of human pancreatic carcinoma by angiogenesis inhibitor TNP-470 (analog of fumagillin derived from Aspergillus fumigatus) in combination with cisplatin in nude mice [72], and augmented antitumor effects of combination therapy cisplatin/TNP-470/IL-12 in melanoma (B6D2F1 mice) and colon carcinoma (Balb/c mice) [73]. Recently, anticancer activity of noscapine, an opioid alkaloid in combination with cisplatin in human nonsmall cell lung cancer, in vitro and in vivo, in murine xenograft model was reported [74].

Selvendiran et al. [75] reported the results of in vitro and in vivo experiments with HO-3867, a curcumin analog, combined with cisplatin. This compound sensitized cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Similar effect was obtained for dihydroartemisinin (derivative of Artemisia compound artemisinin, one of the PERVIVO components) which induced apoptosis and sensitized human ovarian cancer cells to carboplatin therapy [76] and improved the efficiency of chemotherapeutics (cisplatin, cyclophosphamide) in lung carcinomas in vivo and in vitro [77]. Lu et al. reported synergistic action of the C-Jun N-terminal Kinase (JNK) inhibitor and dihydroartemisinin in apoptosis induction through accelerating Bax translocation into mitochondria in human lung adenocarcinoma cells [78].

Suganuma et al. described synergistic proapoptotic effects of epigallocatechin gallate and epicatechin on human lung cancer cell line PC-9 in vitro. This effect was increased by sulindac or tamoxifen [79]. Recently, beneficial effect of sulindac, in combination with dimethylamino parthenolide (nuclear factor-κB inhibitor) and gemcitabine, in genetically engineered mouse model of pancreatic cancer was described [80]. It was revealed that sulindac sulfide can inhibit tumor cell invasion in vitro at concentrations less than those required to inhibit tumor cells growth, by suppressing NF-κB-mediated transcription of microRNAs [81]. Novel sulindac derivatives that do not inhibit COX-1 and COX 2 suppressed colon tumor cell growth in vitro by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity [82] and inhibited in vivo malignant pleural adenocarcinoma dissemination in mice [83].

Figure 1
Typical picture of newly-formed blood vessels.
Figure 2

Inhibitory effect of PERVIVO and sulindac on neovascular reaction induced in mice skin after grafting L-1 sarcoma cells. ***P < 0.001.

Figure 3
% of mice with measurable tumors in various days after L-1 sarcoma cells grafting.
Figure 4
Mean tumor volume 9 days after Sarcoma L-1 cells grafting.
Figure 5

Mean tumor volume 14 days after L-1 sarcoma cells grafting ***P < 0.001.

Table 1
Composition of PERVIVO preparation.
(a) Active components
Radix Angelicae1.360 g
Radix Gentianae0.500 g
Menyanthis folium0.120 g
Herba Absinthii0.035 g
Radix Zingiberis0.015 g
Camphora racemica0.950 g
Theriak0.970 g
(b) Additional
Fructus Anisi stellati0.046 g
Myrrha0.700 g
Herba Cardui benedicti0.015 g
Herba Centaurii0.013 g
Flos Caryophylli0.030 g
Radix Galangae0.014 g
Radix Liquiritiae0.170 g
Radix Calami0.047 g
Radix Helenii0.020 g
Radix Zedoariae1.380 g
Manna1.360 g
Flos Verbasci0.014 g
Radix Carlinae0.680 g
Semen Myristicae0.280 g
Herba Ivae moschatae0.006 g
Radix Iridis0.005 g
Pericarpium Aurantii amari0.031 g
Cortex Curacao0.038 g
Fructus Cubebae0.017 g
Cortex Aurantii dulcis0.011 g
Table 2

Statistical analysis of the results presented inFigure 2.

(a)
One-way analysis of variance
P value*<0.0001
P value summary***
Are means signif. different? (P < 0.05)Yes
Number of groups4
F88.90
R square0.8114
(b)
Bonferroni testMean diff.tSignificant? P < 0.05?Summary
Control versus PERVIVO7.9008.926Yes***
Control versus sulindac10.6011.98Yes***
Control versus PERVIVO + sulindac13.2015.19Yes***
PERVIVO versus sulindac2.7002.854Yes*
PERVIVO versus PERVIVO + sulindac5.3005.691Yes***

*P < 0.05, ***P < 0.001.

Table 3

Statistical analysis of the results presented inFigure 3.

Chi-square
Chi-square, df.23.55, 9
P value0.0051
P value summary∗∗
One- or two-sidedNA
Statistically significant? (alpha < 0.05)Yes
Data analyzed
Number of rows4
Number of columns4

**P < 0.01.

Table 4

Statistical analysis of the results presented inFigure 4.

(a)
One-way analysis of variance
P value<0.0001
P value summary∗∗∗∗
Are means. signif. different? (P < 0.05)Yes
Number of groups4
F14.42
R square0.3223
(b)
Bonferroni testMean diff.tSignificant?P < 0.05?
Control versus sulindac4.8906.973Yes∗∗∗
Control versus PERVIVO2.4303.465Nons.
Control versus sulindac + PERVIVO4.5308.125Yes∗∗∗
Sulindac versus PERVIVO−2.4602.892Nons.
Sulindac versus sulindac + PERVIVO−0.36000.4886Nons.
PERVIVO versus sulindac + PERVIVO2.1002.850Nons.
Sulindac versus sulindac + PERVIVO−0.36000.4886Nons.
PERVIVO versus sulindac + PERVIVO2.1002.850Nons.

***P < 0.001, ****P < 0.0001.

Table 5

Statistical analysis of the results presented inFigure 5.

(a)
One-way ANOVA
Source of variation% of total variationP valueP value summarySignificant?
Interaction1.530.0101Yes
Drug4.25<0.0001∗∗∗Yes
(b)
Bonferroni testMean differencetP valueSummary
Control versus sulindac−6.0000.5758P > 0.05ns
Control versus PERVIVO−16.001.535P > 0.05ns
Control versus sulindac + PERVIVO−58.006.935P < 0.001∗∗∗
Sulindac versus sulindac + PERVIVO−52.004.990P < 0.001∗∗∗
PERVIVO versus sulindac + PERVIVO−42.004.030P < 0.001∗∗∗
Control versus sulindac−6.0000.5758P > 0.05ns
Control versus PERVIVO−16.001.535P > 0.05ns
Control versus sulindac + PERVIVO−58.006.935P < 0.001∗∗∗
Sulindac versus sulindac + PERVIVO−52.004.990P < 0.001∗∗∗
PERVIVO versus sulindac + PERVIVO−42.004.030P < 0.001∗∗∗

*P < 0.05, ***P < 0.001.

Conflict of Interests

The authors certify that there is no conflict of interests with any financial organization regarding the material discussed in the paper.

References

  • 1. StewartKSRyeomSWRegulation of tumor by the immune systemAngiogenesis201218897[Google Scholar]
  • 2. MilanowskiJMilanowska-SzmyginKTreatment of non-small cell lung cancer—where we are?Pneumonologia i Alergologia Polska20138115560[PubMed][Google Scholar]
  • 3. RuggieroLSognoIFocaccettiCEffects of diet-derived molecules on the tumor microenvironmentCurrent Angiogenesis20121206214[Google Scholar]
  • 4. BałanBJStankiewiczWSkopińska-RóżewskaEThe effect of multi-component herbal remedy PERVIVO on cellular immunity and tumor angiogenesis in miceCentral European Journal of Immunology20133815461[Google Scholar]
  • 5. SilvaJABecceneriABMultiHSPurification and differential biological effects of ginger-derived substances on normal and tumor cell linesJournal of Chromatography B2012903157162[Google Scholar]
  • 6. LinCBLinCCTsayGJ6-Gingerol inhibits growth of colon cancer cell LoVo via induction of G2/M arrestEvidence-Based Complementary and Alternative Medicine201220127 pages[PubMed][Google Scholar]
  • 7. HuRZhouPPengYB6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stressPLoS ONE201276[PubMed][Google Scholar]
  • 8. ElkadyAIAbuzinadahOABaeshenNARahmyTRDifferential control of growth, apoptotic activity, and gene expression in human breast cancer cells by extracts derived from medicinal herbs Zingiber officinaleJournal of Biomedicine and Biotechnology2012201214 pages[PubMed][Google Scholar]
  • 9. ChakrabortyDBishayeeKGhoshSBiswasRKumar MandalSKhuda-BukhshAR[6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug-DNA interaction and expression of certain signal genes in HeLa cellsEuropean Journal of Pharmacology20126941–32029[PubMed][Google Scholar]
  • 10. SangSHongJWuHIncreased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerolsJournal of Agricultural and Food Chemistry200957221064510650[PubMed][Google Scholar]
  • 11. WengCJChouCPHoCTYenGCMolecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerolMolecular Nutrition & Food Research201256813041314[PubMed][Google Scholar]
  • 12. LingHYangHTanS-HChuiW-KChewE-H6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activationBritish Journal of Pharmacology2010161817631777[PubMed][Google Scholar]
  • 13. KimE-CMinJ-KKimT-Y[6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivoBiochemical and Biophysical Research Communications20053352300308[PubMed][Google Scholar]
  • 14. BrownACShahCLiuJPhamJTHJianGZJadusMRGinger’s (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitroPhytotherapy Research2009235640645[PubMed][Google Scholar]
  • 15. RhodeJFogorosSZickSGinger inhibits cell growth and modulates angiogenic factors in ovarian cancer cellsBMC Complementary and Alternative Medicine20077, article 44[PubMed][Google Scholar]
  • 16. KrebsSOmerTNOmerBWormwood (Artemisia absinthium) suppresses tumour necrosis factor alpha and accelerates healing in patients with Crohn’s disease—a controlled clinical trialPhytomedicine2010175305309[PubMed][Google Scholar]
  • 17. ChenHSunBPanSJiangHSunXDihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivoAnti-Cancer Drugs2009202131140[PubMed][Google Scholar]
  • 18. JiaoYGeC-MMengQ-HCaoJ-PTongJFanS-JDihydroartemisinin is an inhibitor of ovarian cancer cell growthActa Pharmacologica Sinica200728710451056[PubMed][Google Scholar]
  • 19. WilloughbyJASr.SundarSNCheungMTinASModianoJFirestoneGLArtemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expressionJournal of Biological Chemistry2009284422032213[PubMed][Google Scholar]
  • 20. LuJ-JMengL-HShankavaramUTDihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cellsBiochemical Pharmacology20108012230[PubMed][Google Scholar]
  • 21. LeeJZhouH-JWuX-HDihydroartemisinin downregulates vascular endothelial growth factor expression and induces apoptosis in chronic myeloid leukemia K562 cellsCancer Chemotherapy and Pharmacology2006572213230[PubMed][Google Scholar]
  • 22. LuY-YChenT-SWangX-PLiLSingle-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniquesJournal of Biomedical Optics2010154[PubMed][Google Scholar]
  • 23. HandrickROntikatzeTBauerK-DDihydroartemisinin induces apoptosis by a bak-dependent intrinsic pathwayMolecular Cancer Therapeutics20109924972510[PubMed][Google Scholar]
  • 24. ChenH-HZhouH-JWangW-QWuG-DAntimalarial dihydroartemisinin also inhibits angiogenesisCancer Chemotherapy and Pharmacology2004535423432[PubMed][Google Scholar]
  • 25. HeLWuYLinLHispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathwayCancer Science20111021219225[PubMed][Google Scholar]
  • 26. ChenQCLeeJJinWCytotoxic constituents from Angelicae sinensis radixArchives of Pharmacal Research2007305565569[PubMed][Google Scholar]
  • 27. SuZYKhorTOShuLEpigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix Angelica sinensis via promoter CpG demethylationChemical Research in Toxicology2013263477485[PubMed][Google Scholar]
  • 28. HuangFLiSLuXLiuADuGShiGTwo glutathione S-transferase inhibitors from radix Angelicae sinensisPhytotherapy Research2011252284289[PubMed][Google Scholar]
  • 29. MatsukawaKOgataMHikageTAntiproliferative activity of root extract from gentian plant (Gentiana triflora) on cultured and implanted tumor cellsBioscience, Biotechnology and Biochemistry200670410461048[PubMed][Google Scholar]
  • 30. HoC-LJie-PingOLiuY-CCompositions and in vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from TaiwanNatural Product Communications201054617620[PubMed][Google Scholar]
  • 31. SealSChatterjeePBhattacharyaSVapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cellsPloS ONE2012710[PubMed][Google Scholar]
  • 32. LuoHMaCWangY-JChenJLiuJ-QZhangH-TStudy on apoptosis of BEL-7402 cells induced by galanginZhong Yao Cai200831812041207[PubMed][Google Scholar]
  • 33. ZhangH-TLuoHWuJGalangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathwayWorld Journal of Gastroenterology2010162733773384[PubMed][Google Scholar]
  • 34. ParkSYLimSSKimJKHexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cellsBritish Journal of Nutrition2010104912721282[PubMed][Google Scholar]
  • 35. Stojanović-RadićZComicLRadulovivćNBlagojevićPMihajilov-KrstevTRajkovićJCommercial Carlinae radix herbal drug: botanical identity, chemical composition and antimicrobial propertiesPharmaceutical Biology2012508933940[PubMed][Google Scholar]
  • 36. NibretEWinkMVolatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activitiesPhytomedicine2010175369374[PubMed][Google Scholar]
  • 37. RamazaniASardariSZakeriSVaziriBIn vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two speciesParasitology Research20101073593599[PubMed][Google Scholar]
  • 38. CanerADöşkayaMDeğirmenciAComparison of the effects of Artemisia vulgaris and Artemisia absinthium growing in western Anatolia against trichinellosis (Trichinella spiralis) in ratsExperimental Parasitology20081191173179[PubMed][Google Scholar]
  • 39. WatanabeKTakatsukiHSonodaMTamuraSMurakamiNKobayashiNAnti-influenza viral effects of novel nuclear export inhibitors from Valerianae radix and Alpina galangaDrug Discoveries & Therapeutics2011512631[PubMed][Google Scholar]
  • 40. KaurASinghRDeyCSSharmaSSBhutanKKSinghIPAntileishmanial phenylpropanoids from Alpinia galanga (Linn.) WilldIndian Journal of Experimental Biology2010483314317[PubMed][Google Scholar]
  • 41. RoySKPahwaSNandanwarHJachakSMPhenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatics mc2 155Filoterapia201283712481255[Google Scholar]
  • 42. WangHLiuYChemical composition and antibacterial activity of essential oils from different parts of Litsea cubebaChemistry and Biodiversity201071229235[PubMed][Google Scholar]
  • 43. YangYJiangJQimeiLThe fungicidal terpenoids and essential oil from Litsea cubeba in TibetMolecules2010151070757082[PubMed][Google Scholar]
  • 44. Stojanowić-RadićZComićLJRadulovićNAntistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damageEuropean Journal of Clinical Microbiology & Infectious201231610151025[Google Scholar]
  • 45. DermondORüeggCInhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectivesDrug Resistance Updates200145314321[PubMed][Google Scholar]
  • 46. MoranEMEpidemiological and clinical aspects of nonsteroidal anti-inflammatory drugs and cancer risksJournal of Environmental Pathology, Toxicology and Oncology2002212193201[PubMed][Google Scholar]
  • 47. ThunMJJane HenleySPatronoCNonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issuesJournal of the National Cancer Institute2002944252266[PubMed][Google Scholar]
  • 48. BaronJAEpidemiology of non-steroidal anti-inflammatory drugs and cancerProgress in Experimental Tumor Research200337124[PubMed][Google Scholar]
  • 49. DuncanKUwimpuhweHCzibereANSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivoIUBMB Life2012647636643[PubMed][Google Scholar]
  • 50. PiazzaGARahmALKKrutzschMAntineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosisCancer Research1995551431103116[PubMed][Google Scholar]
  • 51. WaddellWRStimulation of apoptosis by sulindac and piroxicamClinical Science1998953385388[PubMed][Google Scholar]
  • 52. Skopińska-RóżewskaEPiazzaGASommerEInhibition of angiogenesis by sulindac and its sulfone metabolite (FGN- 1): a potential mechanism for their antineoplastic propertiesInternational Journal of Tissue Reactions19982038589[PubMed][Google Scholar]
  • 53. RogalaESkopińska- RóżewskaESommerEThe effect of sulindac on angiogenic activity of human lung and kidney tumor cellsOnkologia Polska2000327783[Google Scholar]
  • 54. Skopińska- RóżewskaEBiałas- ChromiecBRogalaEFilewskaMSkurzakHInhibitory effect of sulindac on L1 sarcoma growth in miceTERAPIA2001322526[Google Scholar]
  • 55. RogalaESkurzakHBiałas-ChromiecBFilewskaMSommerESkopińska-RóżewskaEThe influence of sulindac and its derivatives on L1 sarcoma growth in Balb/c miceOnkologia Polska2002512123[PubMed][Google Scholar]
  • 56. Skopińska-RóżewskaEKrótkiewskiMSommerEInhibitory effect of shark liver oil on cutaneous angiogenesis induced in Balb/c mice by syngeneic sarcoma L-1, human urinary bladder and human kidney tumour cellsOncology Reports19996613411344[PubMed][Google Scholar]
  • 57. WasiutyńskiASiwickiAKBałanBJInhibitory effect of cocoa catechins on embryonic and tumor angiogenesis in micePolish Journal of Environmental Studies200514800805[Google Scholar]
  • 58. WasiutyńskiASkopińska-RóżewskaEJungLComparison of the effects of enoxaparin and nadroparin on tumor angiogenesis in miceCentral-European Journal of Immunology2006311-27074[PubMed][Google Scholar]
  • 59. Skopińska-RóżewskaESkurzakHWasiutyńskiASarcoma L-1 in mice as a model for the study of experimental angiogenesisCentral-European Journal of Immunology20073227783[PubMed][Google Scholar]
  • 60. Skopińska-RóżewskaEMalinowskiMWasiutyńskiAThe influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in micePolish Journal of Veterinary Sciences200811297104[PubMed][Google Scholar]
  • 61. Skopińska-RóżewskaEHartwichMSiwickiAKThe influence of Rhodiola rosea extracts and rosavin on cutaneous angiogenesis induced in mice after grafting of syngeneic tumor cellsCentral-European Journal of Immunology2008333102107[PubMed][Google Scholar]
  • 62. ZdanowskiRSkopińska- RóżewskaEWasiutyńskiAThe effect of Rhodiola kirilowii extracts on tumor-induced angiogenesis in miceCentral European Journal of Immunology2012372131139[Google Scholar]
  • 63. SkopińskiPSzaflikJDuda-KrólBSuppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfoneInternational journal of molecular medicine2004144707711[PubMed][Google Scholar]
  • 64. SkopińskiPSkopińska- RóżewskaESommerESiwickiAKWasiutyńskiAThe effect of some diet-derived angiogenesis inhibitors and sulindac sulfone on the ability of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and interleukin 18 (IL-18) to induce cutaneous neo-vascular response in micePolish Journal of Environmental Studies200514325329[Google Scholar]
  • 65. O’ReillyMSThe combination of antiangiogenic therapy with other modalitiesCancer Journal20028S8999[PubMed][Google Scholar]
  • 66. LingenMWPolveriniPJBouckNPRetinoic acid and interferon α act synergistically as antiangiogenic and antitumor agents against human head and neck squamous cell carcinomaCancer Research1998582355515558[PubMed][Google Scholar]
  • 67. IrieTTsujiiMTsujiSSynergistic antitumor effects of celecoxib with 5-fluorouracil depend on IFN-γInternational Journal of Cancer20071214878883[PubMed][Google Scholar]
  • 68. VasvariGPDyckhoffGKashfiFCombination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivoInternational Journal of Cancer2007121816971704[PubMed][Google Scholar]
  • 69. Skopińska-RóżewskaEChorostowska-WynimkoJKrótkiewskiMInhibitory effect of Greenland shark liver oil combined with squalen and arctic birch ashes on angiogenesis and L-1 sarcoma growth in Balb/c micePolish Journal of Veterinary Sciences2003635456[PubMed][Google Scholar]
  • 70. BanyJSkopińska-RóżewskaEChorostowska-WynimkoJThe effect of complex herbal remedy on the angiogenic activity of L-1 sarcoma cells, L-1 sarcoma tumour growth, and on the bacterial infection in miceCentral-European Journal of Immunology20042912934[PubMed][Google Scholar]
  • 71. SadzukaYSugiyamaTMiyagishimaANozawaYHirotaSThe effects of theanine, as a novel biochemical modulator, on the antitumor activity of adriamycinCancer Letters19961052203209[PubMed][Google Scholar]
  • 72. ShishidoTYasoshimaTDennoRMukaiyaMSatoNHirataKInhibition of liver metastasis of human pancreatic carcinoma by angiogenesis inhibitor TNP-470 in combination with cisplatinJapanese Journal of Cancer Research1998899963969[PubMed][Google Scholar]
  • 73. Dąbrowska-IwanickaAOlszewskaDJaliliAAugmented antitumour effects of combination therapy with TNP-470 and chemoimmunotherapy in miceJournal of Cancer Research and Clinical Oncology20021288433442[PubMed][Google Scholar]
  • 74. ChouguleMPatelARSachdevaPJacksonTSinghMAnticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancerLung Cancer2011713271282[PubMed][Google Scholar]
  • 75. SelvendiranKAhmedSDaytonAHO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibitionCancer Biology and Therapy2011129837845[PubMed][Google Scholar]
  • 76. ChenTLiMZhangRWangHDihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapyJournal of Cellular and Molecular Medicine200913713581370[PubMed][Google Scholar]
  • 77. ZhouH-JZhangJ-LLiAWangZLouX-EDihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitroCancer Chemotherapy and Pharmacology20106612129[PubMed][Google Scholar]
  • 78. LuY-YChenT-SWangX-PQuJ-LChenMThe JNK inhibitor SP600125 enhances dihydroartemisinin-induced apoptosis by accelerating Bax translocation into mitochondria in human lung adenocarcinoma cellsFEBS Letters20105841840194026[PubMed][Google Scholar]
  • 79. SuganumaMOkabeSKaiYSueokaNSueokaEFujikiHSynergistic effects of (−)-epigallocatechin gallate with (−)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9Cancer Research19995914447[PubMed][Google Scholar]
  • 80. Yip-SchneiderMTWuHHrubanRHLowyAMCrooksPASchmidtCMEfficacy of dimethylaminoparthenolide and sulindac in combination with gemcitabine in a genetically engineered mouse model of pancreatic cancerPancreas2012421160167[Google Scholar]
  • 81. LiXGaoLCuiQSulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAsOncogene2012314849794986[PubMed][Google Scholar]
  • 82. WhittJDLiNTinsleyHNA novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activityCancer Prevention Research201256822833[PubMed][Google Scholar]
  • 83. MoschosCPsallidasICottinTA sulindac analogue is effective against malignant pleural effusion in miceLung Cancer2011732171175[PubMed][Google Scholar]
  • 84. QuanCCLeeJJinWCytotoxic constituents from Angelicae sinensis radixArchives of Pharmacal Research2007305565569[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.