Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles.
Journal: 2017/September - Saudi Journal of Biological Sciences
ISSN: 1319-562X
Abstract:
The role of silver nanoparticles (AgNps) is an attractive proposition for advancing modern diabetes therapies and applied science. Stable AgNps with a size range of 3-25 nm were synthesized using aqueous leaf extracts from Ocimum basilicum, Ocimum sanctum, and in combination. The concentration of the extracts facilitated the reduction of silver nitrate that led to the rapid formation of AgNps at room temperature, indicating a higher reaction rate as opposed to harsh chemical methods, and high conversion energy usually involved in the synthesis. The size, shape and elemental analysis were carried out using UV-Visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), and zeta potential whilst, Fourier transform infrared (FTIR) supported by gas chromatography mass spectroscopy (GC-MS) was used to identify the type of capping agents. Inhibition of α-amylase and α-glucosidase enzymes retards the rate of carbohydrate digestion, thereby provides an alternative and a less evasive strategy of reducing postprandial hyperglycaemia in diabetic patients. The AgNps derived from O. sanctum and O. basilicum, respectively displayed an inhibitory effect at 89.31 ± 5.32%, and 79.74 ± 9.51%, respectively, against Bacillus stearothermophilus α-glucosidase enzyme model, indicating an enhanced biocatalytic potential compared to their respective crude extracts and the control. Furthermore, the emerging rate of infections in diabetic patients validates the need for the discovery of dual diabetes therapies. As a result, the bioderived AgNps displayed antimicrobial activity against bacterial species Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Salmonella species.
Relations:
Content
Citations
(8)
References
(41)
Drugs
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Saudi J Biol Sci 24(6): 1294-1305

Enhancing antidiabetic and antimicrobial performance of <em>Ocimum basilicum</em>, and <em>Ocimum sanctum</em> (L.) using silver nanoparticles

Department of Biomedical and Clinical Technology, Faculty of Health Science, Durban University of Technology, Durban, South Africa
Department of Homeopathy, Durban University of Technology, Durban, South Africa
Joyce Nonhlanhla Mbatha: az.ca.tud@malhnalhnon
Corresponding author. Tel.: +27 31 3735280; fax: +27 31 3735295. az.ca.tud@malhnalhnon
Joyce Nonhlanhla Mbatha: az.ca.tud@malhnalhnon
Received 2015 Apr 23; Revised 2015 Jun 24; Accepted 2015 Jun 28.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Results are expressed as mean ± SEM; N = 3; p < 0.05, p-value summary vs control; OS = O. sanctum, OB = O. basilicum.

Results are expressed as mean ± SEM; N = 3; p < 0.05, p-value summary vs control; OS = O. sanctum; OB = O. basilicum; NI = No Inhibition.

Results are expressed as mean inhibition ± SEM, N = 6; OS = O. sanctum, OB = O. basilicum; NI = No Inhibition.

Footnotes

Peer review under responsibility of King Saud University.

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.sjbs.2015.06.026.

Footnotes
Click here to view.(1.1M, docx)
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.