Uncoupled protein 3 and p38 signal pathways are involved in anti-obesity activity of Solanum tuberosum L. cv. Bora Valley.
Journal: 2008/December - Journal of Ethnopharmacology
ISSN: 0378-8741
Abstract:
OBJECTIVE
This study was undertaken to elucidate the anti-obesity mechanism of a new purple potato variety that has been used for the prevention of metabolic diseases as a folk remedy in Korea.
METHODS
Proliferation assay, differentiation assay, Western blotting, were performed in 3T3-L1 adipocytes, while blood chemistry for hyperlipidemic parameters, measurement of body weight and abdominal fats, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, magnetic resonance image (MRI) scanning were carried out in high fat diet fed Sprague-Dawley rats with ethanol extract of Solanum tuberosum L. cv. Bora Valley (ESTBV).
RESULTS
ESTBV significantly inhibited the proliferation and differentiation of 3T3-L1 cells as well as reduced the cellular leptin level. ESTBV also significantly attenuated the levels of insulin and leptin at 500mg/kg in high fat diet fed rats. In addition, ESTBV significantly reduced total fat and whole body lipid in a therapeutic experiment, which was confirmed by MRI scanning and also significantly inhibited the retroperitoneal and epididymal fats in a preventive experiment compared with control. Similarly, the levels of total cholesterol, triglyceride and low density lipoprotein (LDL) were significantly reduced at a lower dose 200mg/kg of ESTBV in a preventive experiment than at 500mg/kg in a therapeutic experiment. Furthermore, body weight gain was significantly suppressed by over 4 weeks treatment of ESTBV compared with control. Interestingly, the expression of p38 mitogen-activated protein kinase (MAPK) was significantly downregulated in 3T3-L1 cells by ESTBV and the expression of uncoupled protein 3 (UCP-3) was activated in fats and liver tissues of ESTBV treated group compared with high fat diet control.
CONCLUSIONS
ESTBV has anti-obesity potential via inhibition of lipid metabolism through p38 MAPK and UCP-3 pathways.
Relations:
Citations
(4)
Drugs
(1)
Chemicals
(8)
Organisms
(5)
Processes
(2)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.