Brain and body hyperthermia associated with heroin self-administration in rats.
Journal: 2002/February - Journal of Neuroscience
ISSN: 1529-2401
PUBMED: 11826136
Abstract:
Intravenous heroin self-administration in trained rats was accompanied by robust brain hyperthermia (+2.0-2.5 degrees C); parallel changes were found in the dorsal and ventral striatum, mediodorsal thalamus, and deep temporal muscle. Temperature began to increase at variable latency after a signal of drug availability, increased reliably (approximately 0.4 degrees C) before the first lever press for heroin, increased further (approximately 1.2 degrees C) after the first heroin injection, and rose more slowly after the second and third injections to stabilize at an elevated plateau (39-40 degrees C) for the remainder of the session. Brain and body temperature declined slowly when drug self-administration was terminated; naloxone precipitated a much more rapid decrease to baseline levels. Changes in temperature were similar across repeated daily sessions, except for the increase associated with the first self-administration of each session, which had progressively shorter latency and greater acceleration. Despite consistent biphasic fluctuations in movement activity associated with heroin self-administrations (gradual increase preceding the lever press, followed by an abrupt hypodynamia after drug infusion), mean brain temperature was very stable at an elevated plateau. Only mean muscle temperature showed evidence of biphasic fluctuations (+/-0.2 degrees C) that were time locked to and correlated with lever pressing and associated movements. Drug- and behavior-related changes in brain temperature thus appear to reflect some form of neuronal activation, and, because temperature is a factor capable of affecting numerous neural functions, it may be an important variable in the control of behavior by drugs of abuse.
Relations:
Citations
(11)
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(1)
Organisms
(3)
Anatomy
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.