A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites
Journal: 2020/August - New Phytologist
Abstract:
Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2 -dependent effects on cell morphology, indicating in vivo functionality. P. infestans -infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane. Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the extrahaustorial membrane. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2 -dependent processes during plant immunity.
Keywords: Phytophthora infestans; Pep-13; Potato; phosphoinositides; protein stability.
Relations:
Citations
(1)
Chemicals
(1)
Organisms
(5)
Processes
(3)
Anatomy
(4)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.