Trap Crops and Population Management of Globodera tabacum tabacum.
Journal: 2011/July - Journal of Nematology
ISSN: 0022-300X
PUBMED: 19277140
Abstract:
Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations.
Relations:
Content
Citations
(1)
Similar articles
Articles by the same authors
Discussion board
J Nematol 28(2): 238-243

Trap Crops and Population Management of <em>Globodera tabacum tabacum</em>

Abstract

Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations.

Keywords: eastern black nightshade, fallow, Globodera tabacum tabacum, hatch, Lycopersicon esculentum, Nicotiana tabacum, resistance, Solanum ptycanthum, tobacco, tobacco cyst nematode, tomato, trap crop

Full Text

The Full Text of this article is available as a PDF (447K).

Abstract

Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations.

Keywords: eastern black nightshade, fallow, Globodera tabacum tabacum, hatch, Lycopersicon esculentum, Nicotiana tabacum, resistance, Solanum ptycanthum, tobacco, tobacco cyst nematode, tomato, trap crop
Abstract
Full Text
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.