Prececal amino acid digestibility and phytate degradation in broiler chickens when using different oilseed meals, phytase and protease supplements in the feed.
Journal: 2019/June - Poultry Science
ISSN: 1525-3171
Abstract:
The purpose of this study was to investigate the effects of phytase and protease supplementation on prececal (pc) amino acid (AA) digestibility, phytate (InsP6) degradation, and MEn concentration in diets using 3 oilseed meals as main protein sources in broiler chicken feed. The broiler chicken diets, which lacked mineral phosphorus, contained either soybean meal (SBM), SBM and rapeseed meal (SBM/RSM), or SBM and sunflower meal (SBM/SFM) as main protein sources. Diets were not supplemented with enzymes or supplemented with 1,500 or 3,000 FTU phytase/kg, or with 1,600 mg protease/kg. For diets containing SBM as the main protein source, the effects of phytase supplementation with and without monocalcium phosphate were also investigated. Data were obtained during 2 subsequent runs from days 14 to 22 and from days 23 to 31. Each diet was tested using 8 replicates with 4 replicates per run. For pc AA digestibility, no significant interactions were observed between main protein sources, enzyme supplementation, or addition of monocalcium phosphate except for Cys. Supplementation of 1,500 FTU phytase/kg increased pc digestibility of all AA. No differences in pc AA digestibility were observed between 1,500 and 3,000 FTU phytase/kg supplementation treatments. Prececal disappearance of InsP6 and pc P digestibility were greater in the high phytase supplementation treatment. Protease supplementation increased pc digestibility of all AA except for Cys when SBM/RSM was the main protein source. Supplementation of protease and 3,000 FTU phytase/kg increased MEn concentrations. The effect of phytase on pc AA digestibility was fully expressed at a lower supplementation level than needed for a maximized pc InsP6 disappearance and MEn concentration.
Relations:
Citations
(2)
Chemicals
(3)
Genes
(1)
Organisms
(2)
Processes
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.