Changes in antioxidant defense status in hypercholesterolemic rats treated with Ajuga iva.
Journal: 2008/August - Phytomedicine
ISSN: 1618-095X
Abstract:
The aim of the study was to investigate the effect of aqueous extract of Ajuga iva (Ai) on serum and tissues lipid peroxidation as well as antioxidant enzymes activities in red blood cells (RBC) and tissues, in high hypercholesterolemic rats (HC). Male Wistar rats (n=12) were fed on 1% cholesterol-enriched diet for 15d. After this adaptation phase, hypercholesterolemic rats (total cholesterol=6.5+/-0.6mol/l) were divided into two groups fed the same diet and treated or not with Ai for 15d. Thiobarbituric acid reactive substances (TBARS) concentrations in serum, LDL-HDL(1), HDL(2) and HDL(3) were respectively, 5-, 7.8-, 2.3- and 5-fold lower in Ai treated than untreated hypercholesterolemic groups. TBARS concentrations were 1.4-fold lower in heart and 2.8-fold higher in kidney in Ai-HC treated than untreated HC group. Superoxide dismutase activity was respectively, 1.2- and 1.4-fold higher in RBC and muscle in Ai treated than untreated group. In RBC, Ajuga iva treatment enhanced glutathione peroxidase (GSH-Px) (+9%) and glutathione reductase (GSSH-Red) (+12%) in Ai-HC treated than untreated HC group. GSSH-Red activity was 1.4- and 1.5-fold higher in adipose tissue and heart, respectively and 3.7-fold lower in kidney in Ai treated than untreated group. Liver catalase activity was 1.6-fold higher in Ai treated than untreated group. Adipose tissue and muscle total glutathione content represented in Ai treated group 35% and 36% of the value noted in untreated group. Nitric oxide values of liver, adipose tissue and heart were 3.3-, 2.5- and 3.4-fold higher in Ai-HC than HC group. Ajuga iva treatment enhanced alpha-tocopherol contents (+25%) in Ai treated than untreated group. In conclusion, Ajuga iva treatment is more effective to improve the antioxidant capacity of RBC than that of tissues. Indeed, Ai is able to reduce the oxidative stress in hypercholesterolemic rats by increasing the antioxidant enzymes activity.
Relations:
Citations
(4)
Diseases
(1)
Conditions
(1)
Drugs
(3)
Chemicals
(5)
Organisms
(4)
Processes
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.