Cloning, Characterization, and Expression Analysis of a Gene Encoding a Putative Lysophosphatidic Acid Acyltransferase from Seeds of Paeonia rockii.
Journal: 2017/June - Applied Biochemistry and Biotechnology
ISSN: 1559-0291
Abstract:
Tree peony (Paeonia section Moutan DC.) is an excellent woody oil crop, and the cloning and functional analysis of genes related to fatty acid (FA) metabolism from this organism has not been reported. Lysophosphatidic acid acyltransferase (LPAAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. This project reports a putative lysophosphatidic acid acyltransferase gene PrLPAAT1 isolated from Paeonia rockii. Our data indicated that PrLPAAT1 has 1047 nucleotides and encodes a putative 38.8 kDa protein with 348 amino acid residues. Bioinformatic analysis demonstrated that PrLPAAT1 contains two transmembrane domains (TMDs). Subcellular localization analysis confirmed that PrLPAAT1 is a plasma membrane protein. Phylogenetic analysis revealed that PrLPAAT1 shared 74.3 and 65.5% amino acid sequence identities with the LPAAT1 sequences from columbine and grape, respectively. PrLPAAT1 belongs to AGPAT family, and may have acyltransferase activity. PrLPAAT1 was ubiquitously expressed in diverse tissues, and PrLPAAT1 expression was higher in the flower and developing seed. PrLPAAT1 is probably an important component in the FA accumulation process, especially during the early stages of seed development. PrLPAAT1 overexpression using a seed-specific promoter increased total FA content and the main FA accumulation in Arabidopsis transgenic plants.
Relations:
Citations
(1)
Chemicals
(3)
Organisms
(3)
Processes
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.