Ajudecumin A from Ajuga ovalifolia var. calantha exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW264.7 murine macrophages and animal models of acute inflammation.
Journal: 2019/May - Pharmaceutical Biology
ISSN: 1744-5116
Abstract:
Ajuga ovalifolia Bur. et Franch. var. calantha (Diels) C. Y. Wu et C. Chen (Labiatae), a traditional Chinese medicine, has been used to treat several inflammatory diseases.To assess the anti-inflammatory activity of ajudecumin A isolated from Ajuga ovalifolia var. calantha, and its possible mechanisms.Lipopolysaccharide (LPS, 0.5 μg/mL)-stimulated RAW264.7 macrophages were used to assess the anti-inflammatory activity of ajudecumin A (1-40 μM) in vitro. Nitric oxide levels were evaluated by Griess reagent. The mRNA levels of iNOS, COX-2, TNF-α, IL-1β and IL-6 were determined using qRT-PCR. Phosphorylation of ERK, JNK, p38 MAPK and IκBα were detected by western Blot. To further assess the anti-inflammatory of ajudecumin A in vivo, mice were oral treated with ajudecumin A (10 mg/kg) or dexamethasone (0.25 mg/kg, positive control) for 5 days before administration of carrageenan or xylene. Paw and ear edema were then measured, respectively.

RESULTS
Ajudecumin A (10-40 μM) decreased LPS-induced nitric oxide production with an IC50 value of 16.19 μM. Ajudecumin A (20 and 40 μM) also attenuated cell spreading and formation of pseudopodia-like structures, and decreased the mRNA levels of iNOS (55.23-67.04%, p < 0.001), COX-2 (57.58-70.25%, p < 0.001), TNF-α (53.75-58.94%, p < 0.01-0.001), IL-1β (79.41-87.85%, p < 0.001) and IL-6 (54.26-80.52%, p < 0.01-0.001) in LPS-activated RAW264.7 cells. Furthermore, ajudecumin A suppressed LPS-induced phosphorylation of ERK, p38 MAPK, and IκBα, as well as IκBα degradation (p < 0.05-0.001). Finally, ajudecumin A (10 mg/kg) attenuated carrageenan- and xylene-induced inflammation in mice by about 28 and 24%, respectively.

Ajudecumin A exhibited a potent anti-inflammatory activity in vitro and in vivo through inhibition on NF-κB and ERK/p38 MAPK pathways, suggesting that ajudecumin A may be potentially developed as a lead compound in anti-inflammatory drug discovery.
Relations:
Conditions
(2)
Drugs
(3)
Chemicals
(2)
Genes
(3)
Organisms
(2)
Processes
(1)
Anatomy
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.