Hypoxemia in COVID-19 patients: An hypothesis
Journal: 2020/July - Medical Hypotheses
Abstract:
The current SARS-Cov-2 virus pandemic challenges critical care physicians and other caregivers to find effective treatment for desperately ill patients - especially those with sudden and extreme hypoxemia. Unlike patients with other forms of Acute Respiratory Distress Syndrome, these patients do not exhibit increased lung stiffness or dramatic dyspnea., even in the presence of arterial blood oxygen levels lower than that seen normally in mixed venous blood. Urgent intubation and mechanical ventilation with high inflation pressures and raised inhaled oxygen concentration have proved unhelpful or worse, but why? Our Hypothesis is that sudden opening of a previously undetected probe-patent foramen ovale (PPFO) may explain this mystery. As hypoxemia without acidosis is a rather weak stimulus of dyspnea or increased ventilation, and opening of such an intracardiac shunt would not worsen lung mechanical properties, the absence of dramatic symptom changes would not be surprising. We point out the high frequency of PFO both in life and at autopsy, and the physiological evidence of large shunt fractions found in Covid-19 patients. Published evidence of hypercoagulability and abundant evidence of pulmonary emboli found at autopsy are in accord with our hypothesis, as they would contribute to raised pressure in the pulmonary arteries and right heart chambers, potentially causing a shunt to open. We review the interaction between viral corona spike protein and ACE-2 receptors present on the surface of alveolar lining cells, and contribution to hypercoagulabilty caused by the spike protein. Search for an open PFO after a large drop in arterial oxygen saturation can be performed at the bedside with a variety of well-established techniques including bedside echocardiography, nitrogen washout test, and imaging studies. Potential treatments might include balloon or patch closure of the shunt, and various drug treatments to lower pulmonary vascular resistance.
Relations:
Content
Citations
(2)
References
(36)
Diseases
(4)
Conditions
(2)
Organisms
(1)
Processes
(2)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Med Hypotheses 143: 110022

Hypoxemia in COVID-19 patients: An hypothesis

910 S Gretna Green Way, Los Angeles, CA 90049, United States
H.K. Fisher: moc.duolci@yobsiuolts
Received 2020 May 21; Revised 2020 Jun 9; Accepted 2020 Jun 19.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  • 1. Covid-19 Dashboard by the Center for Systems Science and Engineering (CSSE) May 16, 2020. .[PubMed]
  • 2. Wadman M, Courzin-Frankel J, Kaiser J, Metacic C. Biology, Coronavirus DOI:10. 1126/Science.abc3208.
  • 3. Levitan R. The infection that’s silently killing coronavirus patients. NY Times. April 20, 2020.
  • 4. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello DCOVID-19 does not lead to a “Typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–1300. doi: 10.1164/rccm.202003-0817LE.] [[Google Scholar]
  • 5. Bangalore S., Sharma A., Slotwiner A., Yatskar L., Harari R., Shah B., Ibrahim H., Friedman G.H., Thompson C., Alviar C.L., Chadow H.L., Fishman G.I., Reynolds H.R., Keller N., Hochman J.SST-segment elevation in patients with Covid-19 — a case series. N Engl J Med. 2020;382(25):2478–2480. doi: 10.1056/NEJMc2009020.] [[Google Scholar]
  • 6. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y.i., Zhang L.i., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L.i., Xie J., Wang G., Jiang R., Gao Z., Jin Q.i., Wang J., Cao BClinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.] [[Google Scholar]
  • 7. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., Barnaby D.P., Becker L.B., Chelico J.D., Cohen S.L., Cookingham J., Coppa K., Diefenbach M.A., Dominello A.J., Duer-Hefele J., Falzon L., Gitlin J., Hajizadeh N., Harvin T.G., Hirschwerk D.A., Kim E.J., Kozel Z.M., Marrast L.M., Mogavero J.N., Osorio G.A., Qiu M., Zanos T.PPresenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052. doi: 10.1001/jama.2020.6775.] [[Google Scholar]
  • 8. Bhatraju P, Ghassemieh B, Nichols M, Kim R, Jerome K, Nalla A, et al. Covid- 19 in critically ill patients in the Seattle region—case series. NEJM DOI:10.1056/NEJMoa2004500.
  • 9. Dondorp A., Hayat M., Aryal D., Beane A., Schultz MRespiratory support in novel coronavirus disease (COVID-19) patients, with a focus on resource-limited settings. Am J Trop Med Hyg. 2020:1–7. doi: 10.4269/ajtmh.20-0283.] [[Google Scholar]
  • 10. Kim H., Hong H., Yoon SDiagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta analysis. Radiology. 2020 doi: 10.1148/radiol.2020201343.] [[Google Scholar]
  • 11. Mason RPathogenesis of COVID-19 from a cell biologic perspective. Eur Respir J. 2020 doi: 10.1183/13993003.00607-2020.] [[Google Scholar]
  • 12. Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine Brief Communication. DOI:10.1038/s41591-020-0868-6. [[PubMed]
  • 13. Rawnsley A. How the coronavirus sneaks into your body. mail. google.com. April 25, 2020. .[PubMed]
  • 14. Lim Y., Ng Y., Tam J., Liu DHuman coronaviruses: a review of virus-host interactions. Diseases. 2016;4:3. doi: 10.3390/diseases4030026.] [[Google Scholar]
  • 15. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang ZStructural and functional basis of SARS-CoV-2 entry by using human ACE1. Cell. 2020 doi: 10.1016/j.cell.2020.03.045. S0092-8674(20)30338-X. ] [[Google Scholar]
  • 16. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.-YPulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thor Oncol. 2020 doi: 10.1016/jtho.2020.02.010.] [[Google Scholar]
  • 17. Hagen P., Scholz D., Edwards WIncidence and size of patent foramen ovale during first ten decades of life. Mayo Clin Proc. 1984;59:17–20.[PubMed][Google Scholar]
  • 18. Wilmshurst P.T., de Belder M.APatent foramen ovale in adult life. (Editorial). Brit Heart J. 1994;718:209–212.[Google Scholar]
  • 19. Liew J., Stevens J., Slatore CRefractory hypoxemia in a patient with submassive pulmonary embolism and an intracardiac shunt. Permanente J. 2018;22:17–061. doi: 10.7812/TOO/120061.] [[Google Scholar]
  • 20. Giannis D., Ziogas I., Gianni PJ Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. Clin Virol. 2020;127 doi: 10.1016/j.jcv.2020.104362.] [[Google Scholar]
  • 21. Wichmann D., Sperhake J.-P., Lutgehetmann M. Autopsy findings and venous thromboembolism in patients with COVID-19. A prospective cohort study. Annals. 2020
  • 22. Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi PPulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. medRxiv. 2020 doi: 10.1101/2020.04.19.2005462.] [[Google Scholar]
  • 23. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lasalle F et al. Pulmonary Embolism in COVID-19 patients: awareness of an increased prevalence. DOI:10.1161/CirculationAHA.120.047430. [[PubMed]
  • 24. Grillet F., Behr J., Calame P., Aubry S., Delabrousse EAcute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology. 2020 doi: 10.1148/radiol.2020201544.] [[Google Scholar]
  • 25. Fox S, Akmatbekov A, Harbert J, Li G, Brown J, Vander Heide R. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv preprint DOI:10.1101/2020.04.06.20050575.
  • 26. Gralinski L.E., Bankhead A., III, Jeng S., Menachery V.D., Proll S., Belisle S.E., Matzke M., Webb-Robertson B.-J., Luna M.L., Shukla A.K., Ferris M.T., Bolles M., Chang J., Aicher L., Waters K.M., Smith R.D., Metz T.O., Law G.L., Katze M.G., McWeeney S., Baric R.S., Dermody T.SMechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4(4) doi: 10.1128/mBio.00271-13.] [[Google Scholar]
  • 27. Wang J., Hajizadeh N., Moore ETissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Hemostasis. 2020 doi: 10.1111/jth.14828.] [[Google Scholar]
  • 28. Cha A.EYoung and middle aged people, barely sick with COVID-19, are dying from strokes. Washington Post. 2020[PubMed][Google Scholar]
  • 29. Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q.i., Shi X., Wang Q., Zhang L., Wang XStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi: 10.1038/s41586-020-2180-5.] [[PubMed][Google Scholar]
  • 30. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan BA crucial role of angiotensin converting enzyme 2 in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. doi: 10.1038/nm1268.] [[Google Scholar]
  • 31. Turner AJ. ACE2 cell biology, regulation and physiological functions. Chap 25: The protective arm of the renin-angiotensin system (RAS). DOI:10.1016/8978-0-12-801364-9.00025-0.
  • 32. Li F., Li W., Farzan M., Harrison SStructure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868.[PubMed][Google Scholar]
  • 33. Towler P., Staker B., Prasad S., Menon S., Tang J., Parsons TACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996–18007. Epub 2004 Jan 30. [[PubMed][Google Scholar]
  • 34. Imai Y., Kuba K., Rao S., Huan Y.i., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.-C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.MAngiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. doi: 10.1038/nature03712.] [[Google Scholar]
  • 35. Wang Y., Li X., Liu W., Gan M., Zhang L.u., Wang J., Zhang Z., Zhu A., Li F., Sun J., Zhang G., Zhuang Z., Luo J., Chen D., Qiu S., Zhang L.i., Xu D., Mok C.K.P., Zhang F., Zhao J., Zhou R., Zhao JDiscovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerging Microbes Infect. 2020;9(1):246–255. doi: 10.1080/22221751.2020.1717999.] [[Google Scholar]
  • 36. Graves M., Kiratli P., Mozley DScintigraphic diagnosis of a right to left shunt in end-stage lung disease. Respir Med. 2003;97(5):549–554. doi: 10.1053/rmed.2003.1481.] [[PubMed][Google Scholar]
  • 37. Maeda S., Katsura H., Chida K., Imai T., Kuboki K., Watanabe CLack of correlation between p pulmonale and right atrial overload in chronic obstructive airways disease. Brit Heart J. 1991;65(3):132–136. doi: 10.1136/hrt.65.3.132.] [[Google Scholar]
  • 38. Rotzinger D., Beigelman-Aubry C., von Garnier C., Qanadli SPulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res. 2020 doi: 10.1016/j.thrombres.2020.04.011.] [[Google Scholar]
  • 39. Zhang T.-T., Cheng G.-S., Wang J., Wang X.-Y., Xie X.-G., Du Y.-JPlatypnea-orthodeoxia syndrome in a patient with a pre-existing patent foramen ovale successfully treated with an atrial septal occluder. J Geriatr Cardiol. 2015;12(3):323–325.[Google Scholar]
  • 40. Brawn M., Frankender DTranscatheter closure of PFO in patients with cerebral ischemia. J Am Coll Cardiol. 2002;39:2019–2025.[PubMed][Google Scholar]
  • 41. Coro A., Boone Y., Mallabiabarrena I., Augstburger M., Tozzi P., Ferrari EMyocardial and pulmonary effects of aqueous oxygen with acute hypoxia. Ann Thorac Surg. 2004;78(3):956–960.[PubMed][Google Scholar]
  • 42. Spears JReperfusion microvascular ischemia after prolonged coronary occlusion: implications and treatment with local supersaturated oxygen delivery. Hypoxia (Auckl) 2019;7:65–79. doi: 10.2147/HP.S217955. eCollection 2019. ] [[Google Scholar]
  • 43. Clements J.A., Fisher H.KThe oxygen dilemma. (Editorial) New England J Med. 1970;282:976.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.