Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels.
Journal: 2015/February - Biosensors and Bioelectronics
ISSN: 1873-4235
Abstract:
Newly synthesized gold and cobalt oxide nanoparticle embedded Polypropylene-g-Polyethylene glycol was used for a compartment-less enzymatic fuel cell. Glucose oxidase and bilirubin oxidase were selected as anodic and cathodic enzymes, respectively. Electrode fabrication and EFC operation parameters were optimized to achieve high power output. Maximum power density of 23.5 µW cm(-2) was generated at a cell voltage of +560 mV vs Ag/AgCl, in 100mM PBS pH 7.4 with the addition of 20mM of synthetic glucose solution. 20 µg of polymer amount with 185 µg of glucose oxidase and 356 µg of bilirubin oxidase was sufficient to get maximum performance. The working electrodes could harvest glucose, produced during photosynthesis reaction of Carpobrotus Acinaciformis plant, and readily found in real domestic wastewater of Zonguldak City in Turkey.
Relations:
Citations
(2)
Drugs
(2)
Chemicals
(7)
Organisms
(2)
Processes
(1)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.