Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients
Journal: 2020/June - PeerJ
Abstract:
In this study we analysed the impact of water regime and soil nutrients on the clonal diversity and genetic variation of the sedge Carex nigra in a central alpine fen. For our analysis, we established 16 study plots randomly distributed over the fen. We determined the exact elevation of each plot as an indicator for the water regime and measured the content of phosphorous and potassium in the soil of each plot. Clonal diversity and genetic variation of C. nigra were assessed with nuclear microsatellites using leaf material collected in 20 subplots along a diagonal cross within each study plot. The influence of water regime and soil mineral nutrients on clonal diversity and genetic variation was estimated by Bayesian multiple regression. Our study revealed a clear impact of soil nutrient conditions on clonal diversity and genetic variation of C. nigra, which increased with the concentration of phosphorous and decreased with the concentration of potassium. Key background to these findings seems to be the relative offspring success from generative as compared to clonal propagation. Phosphorous acquisition is essential during seedling establishment. Clonal diversity and genetic variation increase, therefore, at sites with higher phosphorous contents due to more successful recruitment. High levels of clonal diversity and genetic variation at sites of low potassium availability may in contrast be mainly caused by increased plant susceptibility to abiotic stress under conditions of potassium deficiency, which brings about more gaps in C. nigra stands and favors the ingrowth from other clones or recruitment from seeds.
Keywords: Carex nigra; Clonality; High alpine fen; Microsatellites; Soil nutrients.
Relations:
Content
Diseases
(1)
Drugs
(1)
Chemicals
(1)
Processes
(3)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
PeerJ 8: e8887

Clonal diversity and genetic variation of the sedge <em>Carex nigra</em> in an alpine fen depend on soil nutrients

Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
Institute for Evolution and Biodiversity, Faculty of Biology, University of Münster, Münster, Germany
Corresponding author.
Christoph Reisch: ed.ru@hcsier.hpotsirhc
Received 2019 Nov 28; Accepted 2020 Mar 11.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

Abstract

In this study we analysed the impact of water regime and soil nutrients on the clonal diversity and genetic variation of the sedge Carex nigra in a central alpine fen. For our analysis, we established 16 study plots randomly distributed over the fen. We determined the exact elevation of each plot as an indicator for the water regime and measured the content of phosphorous and potassium in the soil of each plot. Clonal diversity and genetic variation of C. nigra were assessed with nuclear microsatellites using leaf material collected in 20 subplots along a diagonal cross within each study plot. The influence of water regime and soil mineral nutrients on clonal diversity and genetic variation was estimated by Bayesian multiple regression. Our study revealed a clear impact of soil nutrient conditions on clonal diversity and genetic variation of C. nigra, which increased with the concentration of phosphorous and decreased with the concentration of potassium. Key background to these findings seems to be the relative offspring success from generative as compared to clonal propagation. Phosphorous acquisition is essential during seedling establishment. Clonal diversity and genetic variation increase, therefore, at sites with higher phosphorous contents due to more successful recruitment. High levels of clonal diversity and genetic variation at sites of low potassium availability may in contrast be mainly caused by increased plant susceptibility to abiotic stress under conditions of potassium deficiency, which brings about more gaps in C. nigra stands and favors the ingrowth from other clones or recruitment from seeds.

Keywords: Microsatellites, Carex nigra, Clonality, High alpine fen, Soil nutrients
Click here for additional data file.(25K, xlsx)Click here for additional data file.(26K, jpg)Click here for additional data file.(167K, pdf)Click here for additional data file.(24K, docx)Click here for additional data file.(21K, docx)Click here for additional data file.(3.1K, r)Click here for additional data file.(378 bytes, csv)Click here for additional data file.(922 bytes, csv)

Acknowledgments

The authors thank Teresa Wallner for collecting plant material and preliminary work in the lab. Special thanks go to Petra Schitko for assistance in the genetic lab and to Sabine Fischer for the design of the map showing the sampling plots. Furthermore, we would like to thank Peter Poschlod for helpful discussions about the ecology of alpine fens and his generous support.

Funding Statement

The authors received no funding for this work.

References

  • 1. Adler W, Oswald K, Fischer R Exkursionsflora von Österreich. Ulmer; Stuttgart: 1994. [PubMed][Google Scholar]
  • 2. Araki S, Kunii HRelationship between seed and clonal growth in the reproduction of Carex rugulosa KüK. in riverside meadows. Plant Species Biology. 2008;23:81–89. doi: 10.1111/j.1442-1984.2008.00216.x.[PubMed][Google Scholar]
  • 3. Arnaud-Haond S, Belkhir KGeneclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes. 2007;7:15–17.[PubMed][Google Scholar]
  • 4. Bedford BI, Godwin KSFens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands. 2003;23:608–629. doi: 10.1672/0277-5212(2003)023[0608:FOTUSD]2.0.CO;2.[PubMed][Google Scholar]
  • 5. Bedford BI, Walbridge MR, Aldous APatterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology. 1999;80:2151–2169. doi: 10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2.[PubMed][Google Scholar]
  • 6. Bivand R, Lewin-Koh N. maptools: tools for reading and handling spatial objects. R Package Version 0.9-22017
  • 7. Bivand R, Piras GComparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software. 2015;63:1–36.[PubMed][Google Scholar]
  • 8. Bliss LCArctic and alpine plant life cycles. Annual Review of Ecology and Systematics. 1971;2:405–438. doi: 10.1146/annurev.es.02.110171.002201.[PubMed][Google Scholar]
  • 9. Bonn S, Poschlod P Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und kulturhistorische Aspekte. Quelle &amp; Meyer; Wiesbaden: 1998. [PubMed][Google Scholar]
  • 10. Bragazza L, Gerdol R, Rydin HEffects of mineral and nutrient input on mire bio-geochemistry in two geographical regions. Journal of Ecology. 2003;91:417–426. doi: 10.1046/j.1365-2745.2003.00773.x.[PubMed][Google Scholar]
  • 11. Chapin III FSThe mineral nutrition of wild plants. Annual Review of Ecology and Systematics. 1980;11:233–260. doi: 10.1146/annurev.es.11.110180.001313.[PubMed][Google Scholar]
  • 12. Charpentier A, Grillas P, Thompson JDThe effects of population size limitation on fecundity in mosaic populations of the clonal macrophyte Scirpus maritimus (Cyperaceae) American Journal of Botany. 2000;87:502–507. doi: 10.2307/2656593.] [[PubMed][Google Scholar]
  • 13. Chimner RA, Lemly JM, Cooper DJMountain fen distribution, types and restoration priorities, San Juan Mountains, Colorado, USA. Wetlands. 2010;30:763–771. doi: 10.1007/s13157-010-0039-5.[PubMed][Google Scholar]
  • 14. Cooke JC, Lefor MWThe mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restoration Ecology. 1998;6:214–222. doi: 10.1111/j.1526-100X.1998.00628.x.[PubMed][Google Scholar]
  • 15. Cooper DJEcology of wetlands in big meadows rocky mountain National Park, Colorado. Biological Report US Fish and Wildlife Service. 1990;90:1–45.[PubMed][Google Scholar]
  • 16. Cooper DJ, Andrus REPatterns of vegetation and water chemistry in peatlands of the west-central Wind River Range, Myoming, USA. Canadian Journal of Botany. 1994;72:1586–1597. doi: 10.1139/b94-196.[PubMed][Google Scholar]
  • 17. Deng Z, Chen X, Xie Y, XieY J, Hou Z, Li FThe role of seedling recruitment from juvenile populations of Carex brevicuspis (Cyperaceae) at the Dongting Lake wetlands, China. Scientific Reports. 2015;5:8646. doi: 10.1038/srep08646.] [[Google Scholar]
  • 18. d’Hertefeldt T, Falkgren-Grerup U, Jonsdottir ISResponses to mineral nutrient availability and heterogeneity in physiologically integrated sedges from contrasting habitats. Plant Biology. 2011;13:483–492. doi: 10.1111/j.1438-8677.2010.00393.x.] [[PubMed][Google Scholar]
  • 19. Dietz H, Steinlein T. Ecological aspects of clonal growth in plants. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W, editors. Progress in Botany 64. Springer; Berlin: 2001. pp. 511–530. [PubMed]
  • 20. Dong M, During HJ, Werger MJAMorphological responses to nutrient availability in four clonal herbs. Vegetatio. 1996;123:183–192. doi: 10.1007/BF00118270.[PubMed][Google Scholar]
  • 21. Dorken ME, Eckert CGSeverely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae) Journal of Ecology. 2001;89:339–350. doi: 10.1046/j.1365-2745.2001.00558.x.[PubMed][Google Scholar]
  • 22. Dray S, Dufour ABThe ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software. 2007;22:1–20.[PubMed][Google Scholar]
  • 23. Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH. adespatial: multivariate multiscale spatial analysis. R package version 0.2-02018[PubMed]
  • 24. Edwards GR, Crawley MJHerbivores, seed banks and seedling recruitment in mesic grassland. Journal of Ecology. 1999;87:423–435. doi: 10.1046/j.1365-2745.1999.00363.x.[PubMed][Google Scholar]
  • 25. Ellenberg H Vegetation ecology of Central Europe. Cambridge University Press; Cambridge: 1988. [PubMed][Google Scholar]
  • 26. Ellstr NC, Roose MLPatterns of genotypic diversity in clonal plant species. American Journal of Botany. 1987;74:123–131. doi: 10.1002/j.1537-2197.1987.tb08586.x.[PubMed][Google Scholar]
  • 27. Eriksson ODynamics of genets in clonal plants. Trends in Ecology &amp; Evolution. 1993;8:313–316. doi: 10.1016/0169-5347(93)90237-J.] [[PubMed][Google Scholar]
  • 28. Faulkner JSExperimental hybridization of north-west European species in Carex section Acutae (Cyperaceae) Botanical Journal of the Linnean Society. 1973;67:233–253. doi: 10.1111/j.1095-8339.1973.tb01740.x.[PubMed][Google Scholar]
  • 29. Garcia K, Zimmermann SDThe role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science. 2014;5:337. doi: 10.3389/fpls.2014.00337.] [[Google Scholar]
  • 30. Harper JL Population biology of plants. Academic Press; London: 1977. [PubMed][Google Scholar]
  • 31. Headley AD, Callaghan TV, Lee JAPhosphate and nitrate movement in the clonal plants Lycopodium annotinum L. and Diphasiastrum complanatum (L.) Holub. New Phytologist. 1988;110:487–495. doi: 10.1111/j.1469-8137.1988.tb00287.x.[PubMed][Google Scholar]
  • 32. Hipp A, Kettenring KM, Feldheim KA, Weber JAIsolation of 11 polymorphic tri- and tetranucleotide microstellite loci in a North American sedge (Carex scoparia: Cyperaceae) and cross-amplification in three additional Carex species. Molecular Ecology Resources. 2009;9:625–627. doi: 10.1111/j.1755-0998.2008.02480.x.] [[PubMed][Google Scholar]
  • 33. Hodoki Y, Ohbayashi K, Kunii HAnalysis of population clonal diversity using microsatellite markers in the salt marsh sedge Carex scabrifolia in western Japan. Landscape Ecology. 2014;10:9–15. doi: 10.1007/s11355-012-0210-7.[PubMed][Google Scholar]
  • 34. Honnay O, Bossuyt BProlonged clonal growth: escape route or route to extinction? Oikos. 2005;108:427–432. doi: 10.1111/j.0030-1299.2005.13569.x.[PubMed][Google Scholar]
  • 35. Hutchings MJ, De Kroon HForaging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research. 1994;25:159–238. doi: 10.1016/S0065-2504(08)60215-9.[PubMed][Google Scholar]
  • 36. Jackson RR, Caldwell MMThe scale of nutrient heterogeneity around indivdual plants and its quantification with geostatistics. Ecology. 1993;74:612–614. doi: 10.2307/1939320.[PubMed][Google Scholar]
  • 37. Jacquemyn H, Brys R, Honnay O, Hermy M, Roldán-Ruiz ILocal forest environment largely affects below-ground growth,clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia. Molecular Ecology. 2005;14:4479–4488. doi: 10.1111/j.1365-294X.2005.02741.x.] [[PubMed][Google Scholar]
  • 38. Jiménez-Mejías P, Luceño M, Lye KA, Brochmann C, Gussarova GGenetically diverse but with surprisingly little geographic structure: the complex history of the widespread herb Carex nigra (Cyperaceae) Journal of Biogeography. 2012;39:2279–2291. doi: 10.1111/j.1365-2699.2012.02740.x.[PubMed][Google Scholar]
  • 39. Johnson JBPhytosociology and gradient analysis of a subalpine treed fen in Rocky Mountain National Park, Colorado. Canadian Journal of Botany. 1995;74:1203–1218.[PubMed][Google Scholar]
  • 40. Johnson JB, Steingraeber DAThe vegetation and ecological gradients of calcareous mires in the South Park valley, Colorado. Canadian Journal of Botany. 2003;81:201–219. doi: 10.1139/b03-017.[PubMed][Google Scholar]
  • 41. Karlík P, Poschlod PHistory of abiotic filter: which is more important in determining the species composition of calcareous grasslands. Preslia. 2009;81:321–340.[PubMed][Google Scholar]
  • 42. Košnar J, Štech M, Koutecky PEnvironmental control of clonal growth in Carex nigra: What can be masked under the name Carex nigra subsp. juncella in the Czech Republic? Flora. 2012;207:294–302. doi: 10.1016/j.flora.2011.12.001.[PubMed][Google Scholar]
  • 43. Kruschke JK Doing bayesian data analysis - a tutorial with R., JAGS, and Stan. Academic Press; Waltham: 2015. [PubMed][Google Scholar]
  • 44. Listl D, Reisch CSpatial genetic structure of the sedge Carex nigra reflects hydrological conditions in an alpine fen. Arctic, Antarctic, and Alpine Research An Interdisciplinary Journal. 2012;44:350–358. doi: 10.1657/1938-4246-44.3.350.[PubMed][Google Scholar]
  • 45. Liu FH, Liu J, Dong MEcological consequences of clonal integration in plants. Frontiers in Plant Science. 2016;7:770. doi: 10.3389/fpls.2016.0077.] [[Google Scholar]
  • 46. Lovett Doust LIntraclonal variation and competition in Ranunculus repens. New Phytologist. 1981;89:495–502. doi: 10.1111/j.1469-8137.1981.tb02330.x.[PubMed][Google Scholar]
  • 47. Lynch JP, Brown KMTopsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant Soil. 2001;237:225–237. doi: 10.1023/A:1013324727040.[PubMed][Google Scholar]
  • 48. Marschner H Marschner’s mineral nutrition of higher plants. Academic press; Amsterdam: 2011. [PubMed][Google Scholar]
  • 49. Milton SJ, Dean WRJ, Klotz SEffects of small-scale animal disturbances on plant assemblages of set-aside land in Central Germany. Journal of Vegetation Science. 1997;8:45–54. doi: 10.2307/3237241.[PubMed][Google Scholar]
  • 50. Moilanen M, Saarinen M, Silfverberg KFoliar nitrogen, phosphorus and potassium concentrations of scots pine in drained mires in Finland. Silva Fenn. 2010;44:583–601.[PubMed][Google Scholar]
  • 51. Moor H, Rydin H, Hylander K, Nilsson MB, Lindborg R, Norberg JTowards a trait-based ecology of wetland vegetation. Journal of Ecology. 2017;105:1623–1635. doi: 10.1111/1365-2745.12734.[PubMed][Google Scholar]
  • 52. Morton AJMineral nutrient pathways in a Molinietum in autumn and winter. Journal of Ecology. 1977;65:993–999. doi: 10.2307/2259389.[PubMed][Google Scholar]
  • 53. Nybom HComparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology. 2004;13:1143–1155. doi: 10.1111/j.1365-294X.2004.02141.x.] [[PubMed][Google Scholar]
  • 54. Ohbayashi K, Hodoki Y, Kunii HEstimation of the genetic composition of a near-threatened tidal marsh-plant, Carex rugulosa, in Japan. Wetlands. 2012;32:175–184. doi: 10.1007/s13157-011-0266-4.[PubMed][Google Scholar]
  • 55. Ohsako TClonal and spatial genetic structure within populations of a coastal plant, Carex kobomugi (Cyperaceae) American Journal of Botany. 2010;97:458–470. doi: 10.3732/ajb.0900262.] [[PubMed][Google Scholar]
  • 56. Peakall R, Smouse PE. GENALEX 6: genetic analyses in Excel. Population genetic software for teaching and reseach. Molecular Ecology Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x.] [
  • 57. Peterka T, Hájek M, Jiroušek M, Jiménez-Alfaro B, Aunina L, Bergamini A, Dítě D, Felbaba-Klushyna L, Graf U, Hájková P, Hettenbergerová E, Ivchenko TG, Jansen F, Koroleva NE, Lapshina ED, Lazarević PM, Moen A, Napreenko MG, Pawlikowski P, Plesková Z, Sekulová L, Smagin VA, Tahvanainen T, Thiele A, Bit˛aˇ-Nicolae C, Biurrun I, Brisse H, Ćušterevska R, De Bie E, Ewald J, FitzPatrick Ú, Font X, Jandt U, Ka̧cki Z, Kuzemko A, Landucci F, Moeslund JE, Pérez-Haase A, Rašomavičius V, Rodwell JS, Schaminée JHJ, Šilc U, Stančić Z, Chytrý MFormalized classification of European fen vegetation at the alliance level. Applied Vegetation Science. 2017;20:124–142. doi: 10.1111/avsc.12271.[PubMed][Google Scholar]
  • 58. Piqueras J, Klimes L, Redbo-Torstensson PModelling the morphological response to nutrient availability in the clonal plant Trientalis europaea L. Plant Ecology. 1999;141:117–127. doi: 10.1023/A:1009845014687.[PubMed][Google Scholar]
  • 59. Plummer M. rjags: bayesian graphical models using MCMC. R package version 4-62016[PubMed]
  • 60. Poor A, Hershock C, Rosella K, Goldberg DEDo physiological integration and soil heterogeneity influence the clonal growth and foraging of Schoenoplectus pungens? Plant Ecology. 2005;181:45–56. doi: 10.1007/s11258-005-2429-y.[PubMed][Google Scholar]
  • 61. Price EAC, Marshall CClonal plants and environmental heterogeneity. Plant Ecology. 1999;141:3–7. doi: 10.1023/A:1009838300691.[PubMed][Google Scholar]
  • 62. Raulings EJ, Morris K, Roache MC, Boon PIThe importance of water regimes operating at small spatial scales for the diversity and structure of wetland vegetation. Freshwater Biology. 2010;55:701–715. doi: 10.1111/j.1365-2427.2009.02311.x.[PubMed][Google Scholar]
  • 63. Reisch CGenetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conservation Genetics. 2007;8:893–902. doi: 10.1007/s10592-006-9244-4.[PubMed][Google Scholar]
  • 64. Rickerl DH, Sancho FO, Ananth SVesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality. 1994;23:913–916.[PubMed][Google Scholar]
  • 65. Roalson EHA synopsis of chromosome number variation in the Cyperaceae. Botanical Review. 2008;74:209–393. doi: 10.1007/s12229-008-9011-y.[PubMed][Google Scholar]
  • 66. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant molecular biology manual. 2 edition Kluwer Academic Press; Dordrecht: 1994. pp. 1–8. [PubMed]
  • 67. Rozbrojová Z, Hájek MChanges in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. Journal of Vegetation Science. 2008;19:613–620. doi: 10.3170/2008-8-18416.[PubMed][Google Scholar]
  • 68. Saiz H, Bittebiere AK, Benot ML, Jung V, Mony CUnderstanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. Journal of Vegetation Science. 2016;27:759–770. doi: 10.1111/jvs.12392.[PubMed][Google Scholar]
  • 69. Slade AJ, Hutchings MJAn analysis of the influence of clone size and stolon connections between ramets on the growth of Glechoma hederacea L. New Phytologist. 1987;106:759–771. doi: 10.1111/j.1469-8137.1987.tb00177.x.[PubMed][Google Scholar]
  • 70. Sosnová M, Van Diggelen R, Klimesova JDistribution of clonal growth forms in wetlands. Aquatic Botany. 2010;92:33–39. doi: 10.1016/j.aquabot.2009.09.005.[PubMed][Google Scholar]
  • 71. Sosnová M, Van Diggelen R, Macek P, Klimesova JDistribution of clonal growth traits among wetland habitats. Aquatic Botany. 2011;95:88–93. doi: 10.1016/j.aquabot.2011.04.001.[PubMed][Google Scholar]
  • 72. Stöcklin JEnvironment, morphology and growth of clonal plants—an overview. Botanica Helvetica. 1992;102:3–21.[PubMed][Google Scholar]
  • 73. Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webb DA Flora Europaea vol 1. Cambridge University Press; Cambridge: 1964. [PubMed][Google Scholar]
  • 74. Van Groenendael JM, Klimes L, Klimesova J, Hendriks RJJComparative ecology of clonal plants. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1996;351:1331–1339. doi: 10.1098/rstb.1996.0116.[PubMed][Google Scholar]
  • 75. Wang M, Zheng Q, Shen Q, Gu SThe Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences. 2013;14:7370–7390. doi: 10.3390/ijms14047370.] [[Google Scholar]
  • 76. Warwick NWM, Brock MAPlant reproduction in temporary wetlands: the effects of seasonal timing, depth and duration of flooding. Aquat Bot. 2003;77:153–167. doi: 10.1016/S0304-3770(03)00102-5.[PubMed][Google Scholar]
  • 77. Wassen M, Venterinck HO, Lapshina ED, Tanneberger FEndangered plants persist under phosphorus limitation. Nature. 2005;437:547–550. doi: 10.1038/nature03950.] [[PubMed][Google Scholar]
  • 78. Watkinson AR, Powell JCSeedling recruitment and the maintenance of clonal diversity in plant populations—a computer simulation of Ranunculus repens. Journal of Ecology. 1993;81:707–717. doi: 10.2307/2261668.[PubMed][Google Scholar]
  • 79. Weppler T, Stöcklin JVariation of sexual and clonal reproduction in the alpine Geum reptans in contrasting altitudes and successional stages. Basic and Applied Ecology. 2005;6:305–316. doi: 10.1016/j.baae.2005.03.002.[PubMed][Google Scholar]
  • 80. Windmaißer T, Reisch CLong-term study of an alpine grassland: local constancy in times of global change. Alpine Botany. 2013;123:1–6. doi: 10.1007/s00035-013-0112-9.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.