The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells.
Journal: 2004/May - Plant Cell
ISSN: 1040-4651
Abstract:
The Linum usitatissimum (flax) L gene alleles, which encode nucleotide binding site-Leu rich repeat class intracellular receptor proteins, confer resistance against the Melampsora lini (flax rust) fungus. At least 11 different L resistance specificities are known, and the corresponding avirulence genes in M. lini map to eight independent loci, some of which are complex and encode multiple specificities. We identified an M. lini cDNA marker that cosegregates in an F2 rust family with a complex locus determining avirulence on the L5, L6, and L7 resistance genes. Two related avirulence gene candidates, designated AvrL567-A and AvrL567-B, were identified in a genomic DNA contig from the avirulence allele, whereas the corresponding virulence allele contained a single copy of a related gene, AvrL567-C. Agrobacterium tumefaciens-mediated transient expression of the mature AvrL567-A or AvrL567-B (but not AvrL567-C) proteins as intracellular products in L. usitatissimum and Nicotiana tabacum (tobacco) induced a hypersensitive response-like necrosis that was dependent on coexpression of the L5, L6, or L7 resistance gene. An F1 seedling lethal or stunted growth phenotype also was observed when transgenic L. usitatissimum plants expressing AvrL567-A or AvrL567-B (but not AvrL567-C) were crossed to resistant lines containing L5, L6, or L7. The AvrL567 genes are expressed in rust haustoria and encode 127 amino acid secreted proteins. Intracellular recognition of these rust avirulence proteins implies that they are delivered into host cells across the plant membrane. Differences in the three AvrL567 protein sequences result from diversifying selection, which is consistent with a coevolutionary arms race.
Relations:
Content
Citations
(94)
References
(67)
Drugs
(1)
Chemicals
(3)
Organisms
(5)
Processes
(9)
Similar articles
Articles by the same authors
Discussion board
Plant Cell 16(3): 755-768

The <em>Melampsora lini AvrL567</em> Avirulence Genes Are Expressed in Haustoria and Their Products Are Recognized inside Plant Cells

Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
To whom correspondence should be addressed. E-mail ua.orisc@sille.ffej; fax 61-2-6246-5000.
Received 2003 Dec 17; Accepted 2004 Jan 13.

Abstract

The Linum usitatissimum (flax) L gene alleles, which encode nucleotide binding site–Leu rich repeat class intracellular receptor proteins, confer resistance against the Melampsora lini (flax rust) fungus. At least 11 different L resistance specificities are known, and the corresponding avirulence genes in M. lini map to eight independent loci, some of which are complex and encode multiple specificities. We identified an M. lini cDNA marker that cosegregates in an F2 rust family with a complex locus determining avirulence on the L5, L6, and L7 resistance genes. Two related avirulence gene candidates, designated AvrL567-A and AvrL567-B, were identified in a genomic DNA contig from the avirulence allele, whereas the corresponding virulence allele contained a single copy of a related gene, AvrL567-C. Agrobacterium tumefaciens–mediated transient expression of the mature AvrL567-A or AvrL567-B (but not AvrL567-C) proteins as intracellular products in L. usitatissimum and Nicotiana tabacum (tobacco) induced a hypersensitive response–like necrosis that was dependent on coexpression of the L5, L6, or L7 resistance gene. An F1 seedling lethal or stunted growth phenotype also was observed when transgenic L. usitatissimum plants expressing AvrL567-A or AvrL567-B (but not AvrL567-C) were crossed to resistant lines containing L5, L6, or L7. The AvrL567 genes are expressed in rust haustoria and encode 127 amino acid secreted proteins. Intracellular recognition of these rust avirulence proteins implies that they are delivered into host cells across the plant membrane. Differences in the three AvrL567 protein sequences result from diversifying selection, which is consistent with a coevolutionary arms race.

Abstract

Acknowledgments

Valerie Ryle, Patricia Atkinson, and Diana Hall provided excellent technical assistance. The ML1 mAb was kindly provided by Adrienne Hardham (Research School of Biological Science, Australian National University, Canberra, Australia). This research was supported by grants from the Grains Research and Development Corporation. A.-M.C. was supported by an Australian postgraduate award.

Acknowledgments

Notes

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Peter N. Dodds (ua.orisc@sddod.retep).

Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.020040.

Notes
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Peter N. Dodds (ua.orisc@sddod.retep).
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.