Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents.
Journal: 2011/December - Organic and Biomolecular Chemistry
ISSN: 1477-0539
Abstract:
Two Ru(II) polypyridyl-porphyrin and Zn(II) porphyrin conjugates (Ru-L and Ru-Zn-L) have been synthesized and their photophysical properties studied. The two conjugates, which contained a hydrophobic tetraphenylporphyrin L conjugated via an acetylide linker at its β-position with a hydrophilic Ru(II) polypyridyl complex, showed high singlet oxygen quantum yields (>70%) and substantial two-photon absorption cross-sections (~500 GM). Ru-L gave strong emissions at ~660 and ~733 nm through linear or two-photon excitation. Solvatochromism was observed in the fluorescence spectra of Ru-L and Ru-Zn-L, where in less polar solvents (i.e., toluene and dichloromethane) their fluorescence emissions became slightly blue-shifted with a 3-fold reduction in intensity relative to those observed in polar solvents (i.e., acetonitrile and methanol). Cell-based studies of these complex conjugates were conducted using human nasopharyngeal carcinoma HK-1 and cervical carcinoma HeLa cells on which Ru-L showed rapid cellular uptake, low dark-cytotoxicity, and high photo-cytotoxicity. Furthermore, Ru-L can be excited and emits in the "biological window"in vitro, making it a potential potent new generation photodynamic therapeutic agent capable of singlet oxygen generation and in vitro near-infrared emission.
Relations:
Citations
(1)
Diseases
(1)
Chemicals
(5)
Organisms
(1)
Processes
(1)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.