Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.).
Journal: 2017/May - Journal of the Science of Food and Agriculture
ISSN: 1097-0010
Abstract:
BACKGROUND
Oat is considered as a moderately salt-tolerant crop that could be used to improve saline and alkaline soil. Previous studies have focused on short-term salt stress exposure (0.5-48 h), while molecular mechanisms of salt tolerance in oat remain unclear.
RESULTS
Long-term salt stress (16 days) increased the levels of superoxide dismutase activity, peroxidase activity, malondialdehyde content, putrescine content, spermidine content and soluble sugar content and reduced catalase activity in oat roots. The stress also caused changes in protein profiles in the roots. At least 1400 reproducible protein spots were identified in a two-dimensional electrophoresis gel, among which 23 were differentially expressed between treated vs control plants and 13 were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
CONCLUSIONS
These differentially expressed proteins are involved in five types of biological process: (1) two fructose-bisphosphate aldolases, four alcohol dehydrogenases, an enolase, a UDP-glucuronic acid decarboxylase and an F1-ATPase alpha subunit related to carbohydrate and energy metabolism; (2) a choline monooxygenase related to stress and defense; (3) a lipase related to fat metabolism; (4) a polyubiquitin related to protein degradation; (5) a 14-3-3 protein related to signaling. © 2015 Society of Chemical Industry.
Relations:
Citations
(2)
Drugs
(3)
Chemicals
(2)
Organisms
(2)
Processes
(4)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.