Essential Oil Composition, Antimicrobial and Pharmacological Activities of Lippia sidoides Cham. (Verbenaceae) From São Gonçalo do Abaeté, Minas Gerais, Brazil.
Journal: 2017/August - Pharmacognosy Magazine
ISSN: 0973-1296
Abstract:
BACKGROUND
Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings.
OBJECTIVE
To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract.
METHODS
The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice.
RESULTS
The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities.
CONCLUSIONS
Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response.
CONCLUSIONS
The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α-humulene, α-fenchene, and 1.8-cineole. The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response. Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices.
Relations:
Content
Citations
(2)
References
(27)
Drugs
(25)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Pharmacognosy Magazine. Dec/31/2015; 12(48): 262-270

Essential Oil Composition, Antimicrobial and Pharmacological Activities of Lippia sidoides Cham. (Verbenaceae) From São Gonçalo do Abaeté, Minas Gerais, Brazil

Abstract

Background:

Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings.

Objectives:

To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract.

Materials and methods:

The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice.

Results:

The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities.

Conclusion:

Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response.

SUMMARY

The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α-humulene, α-fenchene, and 1.8-cineole.

  • The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.

  • The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.

  • The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response.

Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices.

INTRODUCTION

Lippia sidoides Cham., popularly known in Brazil as “alecrim-pimenta” (pepper-rosemary), is native to the northeastern region of Brazil and north of the state of Minas Gerais. In folk medicine, this aromatic species is used as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings.[1234] L. sidoides has larvicidal activity against Aedes aegypti,[5] anthelmintic activity in ovines and caprines,[6] insecticidal activity against Lutzomyia longipalpis, a vector of visceral leishmaniasis,[7] trypanocidal activity against Trypanosoma cruzi,[8] and anti-inflammatory activity in mice.[9] In vitro studies of L. sidoides also revealed antifungal activity against Candida spp. and Cryptococcus neoformans[101112] and antibacterial activity against Escherichia coli, Listeria monocytogenes, Salmonella thyphimurium, Staphylococcus aureus, Streptococcus mutans, and Yersinia enterocolitica.[131415]

Results from previous studies suggest that the chemical composition of the essential oil of L. sidoides is variable. For instance, the major component of the essential oil of L. sidoides originated from the Brazilian northeast is thymol,[9161718] whereas the major components of L. sidoides from Lavras, Minas Gerais and São Gonçalo do Abaeté, Minas Gerais are carvacrol[19] and 1.8-cineole, isoborneol and bornyl acetate,[20] respectively. Therefore, it is likely that chemotypes of this species exist.

Considering the importance of the chemical composition for biological activities, the goals of this study were: to analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl acetate, and aqueous fractions; and to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract.

MATERIALS AND METHODS

Plant material

Rooted cuttings of L. sidoides native to São Gonçalo do Abaeté, Minas Gerais were transplanted and grown in Hidrolândia, Goiás (16°54'1.3” S, 49°15'35.2” W, elevation of 835 m). Voucher specimens were deposited in the herbarium of Universidade Federal de Goiás (record number UFG-47319). Leaves were collected in April 2012, dried at room temperature, and ground in a knife mill.

Extraction, identification, and analysis of essential oil

Powdered leaves were grinded and hydrodistilled in a Clevenger-type apparatus. The essential oil was desiccated with anhydrous sodium sulfate and stored in a freezer at –10°C. The essential oil was subjected to gas chromatography coupled with mass spectrometry (GC/MS) using a Shimadzu QP5050A instrument with a fused silica capillary column (CBP-5; 30 m × 0.25 mm × 0.25 µm). Helium was used as the carrier gas, with a constant flow rate of 1 mL/min. The column was heated with programmed temperatures (60°C for 2 min, 3°C per min up to 240°C, 10°C per min up to 280°C, and 280°C for 10 min). The ionization energy was 70 eV. An injection volume of 1 µL of each sample diluted in dichloromethane (20% w/v) was used, with a split ratio of 1:50.

Essential oil components were identified by comparing mass spectra and retention indices with values found in the literature.[21] Retention indices were calculated by coinjecting a mixture of hydrocarbons (C8–C32) and applying the Van Den Dool and Kratz equation.[22]

Preparation of extracts and fractions

Powdered leaves of L. sidoides were macerated three times at room temperature with 95% EtOH (v/v) using a proportion of 1:5 (w/v), then filtered and concentrated in a rotary evaporator below 40°C to obtain the crude ethanol extract (EELS).

Fractions were obtained from the EELS. Fifty grams of EELS were dissolved in 100 mL of MeOH/H2O (7:3) and subjected to liquid–liquid partitioning with solvents of increasing polarity (hexane, dichloromethane, and ethyl acetate).[23] The solvents from each fraction were evaporated in a rotary evaporator. For the final MeOH/H2O fraction, methanol was eliminated in a rotary evaporator and the resulting AF was lyophilized. Four fractions were obtained and designated as follows: hexane fraction (HF), dichloromethane fraction (DF), ethyl-acetate fraction (EAF), and aqueous fraction (AF).

Antimicrobial activity

Essential oil, crude ethanol extract, and fractions (HF, DF, EAF, and AF) were subjected to a microdilution test in broth to determine the minimum inhibitory concentration (MIC) using sterile 96-well microplates with “U”-shaped wells, as recommended by the Clinical and Laboratory Standards Institute.[2425] Experiments were carried out in duplicate.

Microorganisms used in the assays were standard strains from the American Type Culture Collection (ATCC) and clinical isolates provided by the Bacteriology and Mycology Laboratory of the Tropical Pathology and Public Health Institute) of Universidade Federal de Goiás (UFG). The following strains were used: fungi: Candida parapsilosis (ATCC 22019), C. parapsilosis (86U), C. albicans (63U), Cryptococcus sp. (ATCC D), C. gatti (L48), and C. neoformans (L3); Gram-positive bacteria: Bacillus cereus (ATCC 14579), B. subtilis (ATCC 6633), Micrococcus roseus (1740), M. luteus (ATCC 9341), Staphylococcus epidermidis (ATCC 12229), S. aureus (6538), and S. aureus (ATCC 25923); Gram-negative bacteria: Enterobacter aerogenes (ATCC 13048), E. cloacae (HMA/FT502), E. coli (ATCC 11229), Pseudomonas aeruginosa (ATCC 9027), P. aeruginosa (SPM1), Salmonella spp. (19430), and Serratia marcenscens (ATCC 14756).

Fungi were cultivated in Sabourad dextrose agar plates and incubated at room temperature for either 24 h (Candida spp.) or 48 h (Cryptococcus spp.). The bacteria were incubated in Casoy broth at 35°C for 24 h, transferred to an inclined Casoy agar, and incubated at 35°C for an additional 24 h to reactivate the cultures.

The culture medium used in the antifungal activity test was RPMI 1640 and the medium for the antibacterial activity test was 2× Müller Hinton broth (MH). Samples (essential oil, EELS, HF, DF, EAF, and AF) were solubilized in 10% dimethyl sulfoxide (DMSO) and 0.02% Tween 80® and diluted in either RPMI (antifungal activity) to obtain a concentration of 1000 µg/mL or in MH broth (antibacterial activity) to obtain a concentration of 2000 µg/mL.

For the antifungal assays, we added 100 µL of RPMI to all microplate wells in columns 2–12 and 200 µL of each sample to wells A through G in column 1. Using a multichannel pipette, serial dilutions were performed up to column 11, where 100 µL were discarded. Fungal inoculants were prepared in a sterile saline solution (NaCl 0.85%) to obtain a turbidity equivalent to half of the McFarland 1.0 scale (83.2–85% transmittance, measured with a spectrophotometer at 530 nm). Two dilutions (first 1:50, then 1:20) were prepared in RMPI to obtain cellular concentrations between 1 and 5 × 105 UFC/mL. The final dilution of the inoculants in the wells ranged from 0.50 to 0.25 × 103 UFC/mL. One hundred µL of each inoculate were added to each well to obtain sample concentrations between 1000 µg/mL and 0.97 µg/mL. No microorganisms were added to wells in line G, since they were used as controls of the sterility of the medium and of the samples tested. The positive control consisted of itraconazole (Sigma) at a concentration of 16 µg/mL. After inoculation, microplates were covered and incubated at room temperature for 48 h for Candida species, and 72 h for Cryptococcus species. The occurrence of fungal growth was checked visually.

For the antibacterial assays using microplates, 100 µL of MH were added to all wells from columns 2–12 and 200 µL of each sample were added to wells A through G in column 1. A multichannel pipette was used to obtain serial dilutions up to column 11, where the final 100 μL were discarded, for concentrations ranging from 2000 µg/mL to 1.95 µg/mL. Two hundred µL of MH broth containing 10% DMSO and 0.02% Tween 80® were added to line H as a negative control, and pure MH broth was added to column 12 to control for microbial growth. In addition, vancomycin (Sigma) at 32 µg/mL and gentamicin (Sigma) at 128 µg/mL were used as positive controls for Gram-positive and Gram-negative bacteria, respectively.

Bacterial inoculants were prepared in sterile saline solution (NaCl 0.85%) to obtain a turbidity equivalent to half of the McFarland 1.0 scale (79.4–83.2% transmittance, measured with a spectrophotometer at 625 nm). These inoculants were diluted 1:10 in saline to obtain a cell concentration of 107 UFC/mL. Five μL of the inoculants were placed in the wells, for a final concentration of 5 × 105 UFC/mL. No microorganisms were added to wells in line G, which were used as controls of the sterility of the medium and the samples tested. After bacterial inoculation, microplates were sealed and incubated at 35°C ± 2°C for 18–24 h. After the incubation period, 20 µL of 0.5% triphenyltetrazolium chloride (TTC) were added to all wells, and the microplates were reincubated for approximately half an hour. The appearance of a reddish color was considered proof of bacterial growth.

The MIC was defined as the lowest concentration of the sample (in µg/mL) fully capable of inhibiting bacterial or fungal growth. The classification proposed by Holetz et al.[26] was used to interpret the results of the tests of antimicrobial activity. Using this classification, MIC values below 100 µg/mL indicate good inhibitory activity; values between 100 and 500 µg/mL, moderate inhibitory activity; values between 500 and 1000 µg/mL, weak inhibitory activity; and values above 1000 µg/mL characterize an inactive substance.

Pharmacological tests

Experiments were performed using female Swiss albino mice (25–35 g) from the Central Animal House of Universidade Federal de Goiás (UFG). Animals were kept in plastic cages at 22 ± 2°C and on a 12 h light/dark cycle, with free access to pellet food and water, in compliance with the International Guiding Principles for Biomedical Research Involving Animals. All experimental protocols were developed according to the principles of ethics and animal welfare designated by the Brazilian College of Animal Experiments (COBEA). The experimental protocols were approved by the Ethics Commission of UFG (number: 104/08).

Effect on gross behavior or Irwin test

Experimental groups of mice (n = 5 per group) were treated orally (p.o.), intraperitoneally (i.p.), or subcutaneously (s.c.) with increasing doses of 50, 150, 450, and 1350 mg/kg crude ethanol extract solubilized (EELS) in 10% DMSO, whereas control groups received 10 mL/kg of the vehicle (10% DMSO). Animals were observed for 3 min in free ambulation on a flat surface at increasing intervals after treatment (5, 10, 20, 30, and 60 min, 4, 8, 24, and 48 h, and 4 and 7 days). The observed effects were compiled using a standard pharmacological screening approach, adapted from that described by Irwin.[27]

Antinociceptive activity

The antinociceptive effect of the EELS was tested using three different models of analgesia: the acetic acid-induced writhing test, the formalin-induced paw licking test, and the tail flick test.

Acetic acid-induced abdominal writhing test

Acetic acid-induced writhing is commonly used as a screening method for compounds with potential antinociceptive and/or anti-inflammatory activity. Nociception may be caused directly by the stimulation of nerve endings, or indirectly through the release of endogenous mediators involved in pain modulation.[28] The evaluation of abdominal contortions induced by acetic acid was carried out according to Hendershote and Forsaith[29] and Koster et al.[30] Groups of mice (n = 8) were treated by gavage with 100, 300, or 1000 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control group), or indomethacin (10 mg/kg – positive control for antinociceptive activity) 1 h before the application of an acetic acid solution (1.2% v/v; 10 m/kg, i.p.). The writhing response consisted of contraction of the abdominal wall and pelvic rotation followed by hind limb extension. The number of writhing movements made by each animal after the acetic acid injection was counted for 30 min immediately after acid administration. Results were expressed as mean number of writhes ± standard error of the mean (SEM) in 30 min for each experimental group. The median inhibitory dose was estimated on the basis of the dose-effect observed and used in other models.

Formalin-induced paw-licking test

Groups of mice (n = 10) were treated by gavage with 300 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control group), or 10 mg/kg indomethacin (positive control) 60 min before the administration of formalin 3% (formaldehyde 1.2% v/v) in the right hind paw, or s.c. with 5 mg/kg morphine (positive control) 30 min before the formalin application.[31] After the injection of the phlogistic agent, mice were individually placed in a transparent box with a mirror underneath to enable unhindered observation of the formalin-injected paw for 30 min. The duration of the reaction response (paw-licking time) was assessed in two periods. The first phase, from 0 to 5 min, corresponds to neurogenic pain caused by direct stimulation of the nociceptors, whereas in the second phase, between 15 and 30 min, the inflammatory pain is caused by the release of anti-inflammatory mediators.[3233] Pain reaction was defined as vigorous licking and biting of the formalin-injected paw. The duration of the response was measured in seconds.

Tail flick test

Groups of mice (n = 8) were treated p.o. with 300 mg/kg EELS (solubilized in 10% DMSO) or 10 mL/kg vehicle (10% DMSO, 10 mL/kg – control group), or s.c. with 10 mg/kg morphine (positive control). The distal third of the tail of each animal was exposed to thermal stimulation using an analgesymeter. The number of seconds before a tail flick was observed (latency period) was used as an index of nociception. The maximum allowed time of exposure to the stimulus was 20 s. Latency was measured – 30, 0, 30, 60, 120, 150, and 180 min from treatment.[34]

Anti-inflammatory activity

Croton oil-induced ear edema test

Animal groups (n = 10) were treated p.o. with 300 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control group), or 2 mg/kg dexamethasone. After 60 min, cutaneous inflammation was induced by applying 20 μL of an acetone solution of 2.5% v/v croton oil to the inner surface of the right ear. The same volume of acetone was applied to the left ear. After 4 h, topical application of croton oil solution, mice were killed by cervical dislocation, and a plug (6 mm in diameter) was taken from both ears with a punch (modified by Carvalho et al.)[35] and weighed in an analytical balance. The inflammatory response (edema) was determined by measuring the difference in weight (mg) between the pairs of plugs.[36]

Central nervous system activities

Open-field test

This test was based on the methodology described by Siegel[37] and validated by Archer.[38] The test assesses mice ambulatory behavior and detects anxiolytic- or anxiogenic-like agents. The open field apparatus consisted of a white acrylic arena 40 cm in diameter with a wall height of 30 cm. The floor was marked with eight squares of equal areas. Test groups of mice (n = 8) were treated p.o. with 100, 300, or 1000 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control group), or diazepam (5 mg/kg – positive control for motor impairment). After 60 min of treatment, animals were individually placed in the center of the open field and observed for 5 min. We recorded the exploratory activity of the animals (number of squares invaded in the central region), the amount of time spent at the center and in the periphery, and the intervals of time spent rearing, grooming, or immobile.

Chimney test

Test groups of mice (n = 8) were treated p.o. with 100, 300, or 1000 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control group), or 5 mg/kg diazepam (positive control). After 60 min of treatment, animals were individually placed at a mark 10 cm from the end wall of a 25-cm-long glass tube with an inner diameter of 2.5 cm and in a horizontal position. Once the animals reached the opposite end, the tube was moved to a vertical position, and we recorded the amount of time for an animal moving backwards to reach the mark. The motor coordination of animals that did not perform this task within 90 s was considered impaired.[3940]

Pentobarbital-induced sleeping time

Groups of mice (n = 8) were treated p.o. with 100, 300, or 1000 mg/kg EELS (solubilized in 10% DMSO), vehicle (10% DMSO, 10 mL/kg – control), or 5 mg/kg diazepam (positive control for depressant effect). After 60 min, all animals were treated i.p. with 50 mg/kg sodium pentobarbital, a hypnosis inducer. The latency to sleep induction (loss of the righting reflex) and the duration of the hypnosis (time required to recover the righting reflex) were recorded for each animal.[41]

Statistical analysis

All results are expressed as means ± standard error of the mean (SEM). Data were analyzed statistically using either the Student-Newman-Keuls' to compare two means, or one-way analyses of variance (ANOVAs), followed by Tukey tests, when more than two means were involved.

RESULTS

Chemical analysis of the essential oil

The results of the quantitative and qualitative analyses of the essential oil, with volatile components listed in order of elution, are reported in [Table 1]. Total ion chromatograms of the essential oil can be seen in [Fig. 1].

Table 1

Chemical compounds (%) and retention indices (RI) of the essential oils of leaves of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil.

Figure 1

Total ion chromatogram of the chemical constituents of the essential oil from leaves of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. (Arrows: major components).

The essential oil had a yield of 0.8%. Identified compounds were 22 in number (87.99% of the components), including 28.49% oxygenated monoterpenes, 27.10% monoterpene hydrocarbons and 32.40% sesquiterpene hydrocarbons. The major components were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%) [Table 1].

Antimicrobial assays

The essential oil showed weak inhibitory activity (MIC = 500 µg/mL) against S. aureus 6538, S. aureus ATCC 25923, C. parapsilosis ATCC 22019, C. parapsilosis 86U, Cryptococcus sp. ATCC D and C. gatti L48, and was inactive toward the remaining microorganisms [Table 2].

Table 2

Minimum inhibitory concentration (μg/mL) of the essential oil, extracts and fractions from leaves of Lippia sidoides Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil.

Moderate inhibitory activity (MIC = 125–250 µg/mL) was observed for EELS against Cryptococcus sp. ATCC D, C. gatti L48, C. neoformans L3 and C. parapsilosis 86U, and weak inhibitory activity against C. parapsilosis ATCC 22019 and C. albicans 63U (MIC = 250 µg/mL). Moderate antibacterial activity was observed against M. luteus ATCC9341 and S. aureus 6538, and the activity was weak or nonexistent for the other bacteria [Table 2].

The HF had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 µg/mL) and C. gatti L48 (MIC = 62.5 µg/mL), and moderate inhibitory activity (MIC = 250 µg/mL) against C. neoformans L3, C. parapsilosis 86U, and C. parapsilosis ATCC 22019. This fraction had moderate inhibitory activity (MIC = 250 µg/mL) against Bacillus cereus ATCC 14579, S. aureus 6538, and S. aureus ATCC 25923, and weak inhibitory activity (MIC = 500 µg/mL) toward M. roseus 1740, M. luteus ATCC 9341, S. epidermidis ATCC 12229, E. aerogenes ATCC 13048, E. cloacae AMA FTA502, E. coli ATCC 11229, and P. aeruginosa ATCC 9027 [Table 2].

The DF had moderate inhibitory activity (MIC = 125–250 µg/mL) for all strains of Cryptococcus and weak activity (MIC = 500 µg/mL) against Candida. It had moderate inhibitory activity (MIC = 125–250 µg/mL) against Bacillus subtilis ATCC 6633, Micrococcus roseus 1740, M. luteus ATCC 9341, and the Gram-negative bacterium Enterobacter aerogenes ATCC 13048, and weak inhibitory activity (MIC = 500 µg/mL) toward S. aureus 6538, S. aureus ATCC 25923, E. cloacae AMA FTA502, and E. coli ATCC 11229. The EAF and AF were inactive against all bacterial and fungal strains [Table 2].

Pharmacological activities of the crude ethanol extract

Effect on gross behavior

Animals treated subcutaneously (s.c.) with EELS at the 450 mg/kg dose erected their tails after 60 min. The intraperitoneal (i.p.) application of the same dose reduced their spontaneous ambulation between 5 and 20 min. When mice were treated p.o and s.c. at a dose of 1350 mg/kg, tail erection occurred within 10 to 20 min. No other effects, including palpebral ptosis, alienation, catatonia, defecation, urination, and death, were observed.

Analgesic activity

For the acetic-acid-induced abdominal writhing test, the number of abdominal writhes in the groups treated with EELS at doses of 100, 300, or 1000 mg/kg (55.55 ± 6.28, 47.28 ± 9.89, and 42.25 ± 7.12, respectively) were significantly lower than for the control group (88.85 ± 5.90), but there was no significant difference in relation to indomethacin (51.00 ± 13.06) [Fig. 2].

Figure 2

Analgesic effect of the crude ethanolic extract from leaves of Lippia sidoides (EELS), as indicated by the number of acetic-acid-induced abdominal writhes in mice (n = 8). Indomethacin was used as a positive control. Bar heights and error bars express mean ± SEM of the number of writhing movements (%) in 30 min for each experimental group. ***P ≤ 0.001 versus the control group (vehicle).

In the first phase of the formalin test, the animals treated with vehicle had a paw-licking of 62.90 ± 3.97 s. EELS (300 mg/kg) or morphine (5 mg/kg) led a significant reduction of time to reactivity to pain to 46.77 ± 2.78 s and 1.16 ± 0.79 s, respectively, whereas indomethacin (10 mg/kg) did not alter the reaction time (52.45 ± 5.14 s). During the second phase of the test, paw-licking time was decreased by EELS from 205.20 ± 15.67 s (control group) to 50.66 ± 4.08 s, by indomethacin to 105.16 ± 11.69 s, and by morphine to 0 ± 0.00 s [Fig. 3].

Figure 3

Effect of the ethanolic extract from leaves of Lippia sidoides (EELS) on formalin-induced paw-licking test in mice (n = 8) during the neurogenic (1st phase; 0–5 min) and inflammatory phases (2nd phase; 15-30 min). Bar heights and error bars express means ± SEM of paw-licking time, in seconds. *P ≤ 0.05 and ***P ≤ 0.001 versus the control group (vehicle).

There was no significant difference in the latency to thermal stimulus in the tail of animals treated with EELS 300 mg/kg and those belonging to the control group. Treatment with 10 mg/kg of morphine increased latency to 30 min after the treatment [Fig. 4].

Figure 4

Effect of the ethanolic extract from leaves of Lippia sidoides (EELS) on pain reaction time in mice (n = 8). Symbols and error bars indicate means and SEM, respectively, expressed in seconds relative to the control group. Morphine (10 mg/kg) was used as a positive control. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 versus the control group (vehicle).

Evaluation of anti-inflammatory activity

In the croton oil-induced ear edema test, 300 mg/kg EELS or 2 mg/kg dexamethasone reduced the formation of ear edema from 15.99 ± 1.56 to 6.85 ± 0.85 and 2.02 ± 0.53, respectively [Fig. 5].

Figure 5

Effect of the ethanol extract from leaves of Lippia sidoides (EELS) on croton oil-induced ear edema in mice (n = 10). Bar heights and error bars show means ± SEM of differences in weight between right and left ear plugs. Dexamethasone (2 mg/kg) was used as a positive control. ***P ≤ 0.001 versus the control group (vehicle).

Central nervous system activities

In open field test, treatment with EELS (100, 300, or 1000 mg/kg) did not affect the number of squares crossed, squares invaded in the central region, time spent in the peripheral and central region, and rearing, parameters that were modified by diazepam at a dose of 5 mg/kg [Table 3].

Table 3

Effects of the ethanol extract from leaves of Lippia sidoides (EELS) in the open field test with mice (n = 8). Diazepam was used as a positive control.

In the chimney test, treatment with EELS (100, 300, or 1000 mg/kg) did not increase time spent by animals moving backwards to reach the chimney mark when compared to the control group. Treatment with diazepam (5 mg/kg) increased this time significantly in relation to the control group [Table 4].

Table 4

Effects of treatment with the ethanol extract of leaves of Lippia sidoides (EELS) on the chimney test and on the pentobarbital-induced sleeping time test using mice (n = 8). Diazepam was used as a positive control.

In the pentobarbital-induced sleeping time test, treatment with EELS (100, 300, or 1000 mg/kg) did not alter sleep latency or sleeping time induced by pentobarbital. Animals treated with diazepam (5 mg/kg), used as a positive control for this test, had decreased sleep latency and increased sleep time [Table 4].

DISCUSSION

The major constituents of the essential oil from leaves of L. sidoides from São Gonçalo do Abaeté, Minas Gerais were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%). These results confirm the existence of chemical polymorphism in this species, since thymol was the major component in most studies that examined the essential oil of L. sidoides in northeastern Brazil, using individuals from Ceará (Horizonte, 59.65%, Fontenelle et al.[10] and 83.24%, Lima et al.;[42] Juazeiro do Norte, 84.90%, Marco et al.;[18] Crato, 84.87%, Mota et al.[43] and 84.90%, Veras et al.[9]), Rio Grande do Norte (Mossoró, 68.81% and Limoeiro do Norte, 70.36%, Cavalcantiet al.[17]) and Sergipe (Poço Redondo, 38.70%, Farias-Junior et al.;[44] São Cristovão, 43.33%, Carvalho et al.[16]) In contrast, Lima et al.[19] found that the major constituents in L. sidoides from Lavras, Minas Gerais were carvacrol (31.68%), ρ-cymene (19.58%) and 1.8-cineole (9.26%). Thymol was the major constituent of L. sidoides collected in Ceará and grown in Hidrolândia under the same conditions as described for this work (61.59%, preliminary results from the Research Laboratory of Natural Products/UFG), indicating that differences among populations in the chemical composition of the essential oil cannot be attributed to edaphoclimatic factors. The occurrence of chemical polymorphism was described for the genus Lippia by Tavares et al.[45] who identified three chemotypes of Lippia alba, and Jannuzzi et al,[46] who found seven chemotypes in the same species.

Morais et al.[20] described 1.8 cineole as the major constituent (26.67%) of the essential oil of L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás (August 2010), followed by isoborneol, bornyl acetate and α-humulene (14.60%, 10.77% and 5.66%, respectively). Although L. sidoides was collected and grown under the same conditions described in this work, differences between major constituents might be caused by the seasonality of the savanna biome in central Brazil, since in Morais et al.[20] leaves were collected during the dry season, but in the present work they were collected during the rainy season.

Regarding the antimicrobial assays, moderate activities of the ethanol extract and the HF were observed against Candida albicans. These results support the traditional use of L. sidoides for vaginal washings to treat candidiasis. Silva et al.[12] reported activity of the ethanol extract of L. sidoides collected in northeastern Brazil against Candida albicans, C. krusei, and C. tropicalis, and Fontenelle et al.[10] verified that the essential oil of L. sidoides from Horizonte, Ceará inhibited the growth of Candida spp. isolated from dogs and cats.

The HF had good inhibitory activity against Cryptococcus, the causal agent of cryptococcosis, a common infection in immunocompromised patients.[47] Activity against C. neoformans was related by Funari et al.[11] for the crude ethanol extract of L. sidoides collected in Iaras, São Paulo.

Antibacterial activity assays revealed moderate activity of the ethanol extract against M. luteus ATCC 9341 and S. aureus 6538, and activity of the DF against B. subtilis ATCC 6633, M. roseus 1740, M. luteus ATCC 9341, and E. aerogenes ATCC 13048. Bara and Vanetti[13] registered good inhibitory activity against E. coli for the crude ethanol extract of L. sidoides collected in Minas Gerais. In addition, the essential oil of L. sidoides from northeastern Brazil had good inhibitory activity against S. aureus,[15] P. aeruginosa, and E. coli.[1]

In the pharmacological tests, EELS presented antinociceptive activity in acetic acid-induced abdominal writhing test in all doses used (100, 300, and 1000 mg/kg, p.o.), and at the dose of 300 mg/kg in both first and second phases of formalin-induced pain test. However, EELS did not produce any analgesia in tail flick test, suggesting that this extract has no central analgesic properties. For the essential oil of L. sidoides, Alves et al.[48] observed antinociceptive activity through a reduction in the number of abdominal writhes, and Marçal et al.[49] found antinociceptive effects conforming to both thermal and chemical models.

The results obtained here showed that EELS inhibited the inflammation response induced by croton oil as well as dexamethasone, the positive control. Costa et al.[5] registered anti-inflammatory activity of the crude ethanol extract in an experimental model using zymosan-induced arthritis. Other published studies only investigated the anti-inflammatory activity of the essential oil of this species.[9505152] This result suggests that the antinociceptive activity of EELS in the in acetic acid-induced abdominal writhing test and the second phase of formalin-induced pain test may be associated with an anti-inflammatory effect.

Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia[53] as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back the anti-inflammatory use of the crude ethanol extract of this species.

CONCLUSION

The major constituents of the essential oil of L. sidoides from São Gonçalo do Abaeté were isoborneol, bornyl acetate, α-humulene, α-fenchene, and 1.8 cineole, supporting the existence of two chemotypes of this species. Moderate activity of the HF was observed against Candida. The HF had good activity against Cryptococcus. Moderate activity was registered for the EELS against M. luteus and S. aureus, and for the DF against B. subtilis, M. roseus, M. luteus, and E. aerogenes. It was observed anti-inflammatory and antinociceptive activities of EELS, being that the antinociceptive activity may be associated with an anti-inflammatory effect. These results support the traditional use of this species, and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response.

Financial support and sponsorship

Nil

Conflict of interest

There is no conflict of interest.

ABOUT AUTHOR

José Realino de Paula

Dr. José Realino de Paula, graduated in Biochemistry Pharmacy from the Federal University of Ouro Preto (1989), Master in Chemistry (Analytical Chemistry) from the University of São Paulo (1992) and PhD in Science (Organic Chemistry) from the Federal University of São Carlos (1996). He is currently an associate professor IV of the Federal University of Goiás and has experience in Pharmacy, with emphasis in Pharmacognosy, acting on the following topics: Phytochemical, quality control, and morphoanatomy of medicinal plants. Evaluation of the chemical composition of essential oils from aromatic plants. Antimicrobial activity testing of plant extracts and essential oils. Purification and structure determination of special metabolites (secondary) of medicinal plants.

Acknowledgement

The authors gratefully acknowledge the financial support obtained from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Ciência e Tecnologia (CNPq), and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG).

References

  • 1. LemosTLGMatosFJAAlencarJWCraveiroAAClarkAMMcChesneyJDAntimicrobial activity of essential oils of Brazilian plantsPhytother Res19904824[Google Scholar]
  • 2. LorenziHMatosFJAPlantas medicinais no Brasil: nativas e exóticas cultivadasNova OdessaInstituto Plantarum2002[Google Scholar]
  • 3. MatosFJAPlantas medicinais: guia de seleção e emprego de plantas usadas em fitoterapia no Nordeste brasileiro20073rd edFortalezaEd. UFC
  • 4. SousaMPMatosMEOMatosFJAConstituintes ativos de plantas medicinais brasileiras1991FortalezaEd. UFC
  • 5. CostaJGMRodriguesFFGAngélicoECSilvaMRMotaMLSantosNKAEstudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegyptiRev Bras Farmacog2005153049[Google Scholar]
  • 6. Camurça-VasconcelosALBevilaquaCMMoraisSMMacielMVCostaCTMacedo ITetalAnthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodesVet Parasitol200815416770[PubMed][Google Scholar]
  • 7. MacielMVMoraisSMBevilaquaCMLSilvaRABarrosRSSousaRNAtividade inseticida dos óleos essenciais de Lippia sidoides e Coriandrum sativum sobre Lutzomyia longipalpisCiêc Anim2009197787[Google Scholar]
  • 8. BorgesARAiresJRHiginoTMMedeirosMCFCitóAMGLopesJADTrypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of BrazilExp Parasitol201213212338[PubMed][Google Scholar]
  • 9. VerasHNHArarunaMKACostaJGMCoutinhoHDMKerntopfMRBotelhoMATopical antinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of actionPhytother Res20132717985[PubMed][Google Scholar]
  • 10. FontenelleROSMoraisSMBritoEHSKerntopfMRBrilhanteRSNCordeiroRAChemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides ChamJ Antimicrob Chemother20075993440[PubMed][Google Scholar]
  • 11. FunariCSGulloFPNapolitanoACarneiroRLMendes-GianniniMJSFusco-AlmeidaAMChemical and antifungal investigations of six Lippia species (Verbenaceae) from BrazilFood Chem2012135208694[PubMed][Google Scholar]
  • 12. SilvaVAFreitasAFRPereiraSVMOliveiraCRMDinizMFFMPessoaHLFEficácia antifúngica dos extratos de Lippia sidoides Cham. e Matricaria recutita Linn. sobre leveduras do gênero. CandidaRev Biol Farm201151823[Google Scholar]
  • 13. BaraMTFVanettiMCDEstudo da atividade antibacteriana de plantas medicinais, aromáticas e corantes naturaisRev Bras Farmacog19987/82234[Google Scholar]
  • 14. CastroCERibeiroJMDinizTTAlmeidaACFerreiraLCMartinsERAntimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coliRev Bras Pl Med2011132937[Google Scholar]
  • 15. OliveiraFPLimaEOSiqueira JúniorJPSouzaELSantosBHCBarretoHMEffectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical materialRev Bras Farmacog2006165106[Google Scholar]
  • 16. CarvalhoRRCLaranjeiraDCarvalho-FilhoJLSIn vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palmsQuim Nova201362414[Google Scholar]
  • 17. CavalcantiSCNiculauESBlankAFCâmaraCAAraújoINAlvesPBComposition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch)Bioresour Technol201010182932[PubMed][Google Scholar]
  • 18. MarcoCATeixeiraESimplícioAOliveiraCCostaJFeitosaJChemical composition and allelopathyc activity of essential oil of Lippia sidoides ChamChilean J Agricultural Res20127215760[Google Scholar]
  • 19. LimaRKCardosoMGMoraesJCCarvalhoSMRodriguesVGGuimarãesLGLChemical composition and fumigant effect of essential oil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae)Cienc Agrotecnol20113566471[Google Scholar]
  • 20. MoraisSROliveiraTLSBaraMTFConceiçãoECRezendeMHFerriPHChemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves grown in Hidrolândia, Goiás, BrazilInt J Anal Chem201214[Google Scholar]
  • 21. AdamsRPIdentification of essential oil components by gas chromatography/mass spectrometry2007Carol Stream, ILAllured Publishing
  • 22. Van Den DoolHKratzJDA generalization of the retention index system including linear temperature programmed gas–liquid partition chromatographyJ Chromatogr A19631146371[Google Scholar]
  • 23. FerriPHQuímica de produtos naturais: métodos geraisL. C. Di Stasi (Orgs), Plantas medicinais: arte e ciência1996São PauloUniversidade Estadual Paulista[Google Scholar]
  • 24. NCCLS/CLSI–National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard, document M27-A32008
  • 25. NCCLS/CLSI–National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, document M07-A82012
  • 26. HoletzFBPessiniGLSanchesNRCortezDAGNakamuraCVDias FilhoBPScreening of some plants used in the Brazilian folk medicine for the treatment of infectious diseasesMem Inst Oswaldo Cruz200297102731[PubMed][Google Scholar]
  • 27. IrwinCJComparative observational assessment: 1. a. A systematic quantitative procedure for assessing the behavioral and physiologic state of mousePsychopharmacol19681322257[Google Scholar]
  • 28. BerkenkopfJWWeichmanBMProduction of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: Its role in the writhing responseProstaglandins198836693709[PubMed][Google Scholar]
  • 29. HendershotLCForsaithJAntagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and nonanalgesicsJ Pharmacol Exp Ther195912523740[PubMed][Google Scholar]
  • 30. KosterRAndersonMDebeerEJAcetic acid for analgesic screeningFederation Proceedings19591841220[Google Scholar]
  • 31. MeloGOMalvarDCVanderlindeFAPiresPACôrtesWSGermano-FilhoPPhytochemical and pharmacological study of Sedum dendroideum leaf juiceJ Ethnopharmacol200510221720[PubMed][Google Scholar]
  • 32. HunskaarSHoleKThe formalin test in mice: Dissociation between inflammatory and non-inflammatory painPain19873010314[PubMed][Google Scholar]
  • 33. MurrayCWPorrecaFCowanAMethodological refinements to the mouse paw formalin test. An animal model of tonic painJ Pharmacol Methods19882017586[PubMed][Google Scholar]
  • 34. D’AmourFESmithJA method for determining loss of pain sensationJ Pharmacol Exp Ther194172749[Google Scholar]
  • 35. CarvalhoAAVGaldinoPMNascimentoMVMKatoMJValadaresMCCunhaLCAntinociceptive and antiinflammatory activities of grandisin extracted from Virola surinamensisPhytother Res2010241138[PubMed][Google Scholar]
  • 36. TubaroADriPDelbelloGZilliCDella LogiaRThe croton oil ear test revisitedAgents Actions1986173479[PubMed][Google Scholar]
  • 37. SiegelPSAA simple electronic device for the measurement of gross bodily activity of small animalsJ Psychol19462122736[PubMed][Google Scholar]
  • 38. ArcherJTests for emotionality in rats and mice: a reviewAnim Behav19732120535[PubMed][Google Scholar]
  • 39. ColetaMBatistaMTCamposMGCarvalhoRCotrimMDLimaTCCunhaAPNeuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituentsPhytother Res200620106773[PubMed][Google Scholar]
  • 40. LapaAJSouccarCLima-LandmanMTRCastroMSALimaTCMMétodos de Avaliação da Atividade Farmacológica de Plantas Medicinais. Sociedade Brasileira de Plantas Medicinais. Expressão Gráfica, Campinas, São Paulo2003
  • 41. CarliniEABurgosVScreening farmacológico de ansiolíticos: Metodologia laboratorial e comparação entre diazepam e clorobenzepamRev Associaão Bras Psiquiatr197912531[Google Scholar]
  • 42. LimaGPGSouzaTMFreireGPFariasDFCunhaAPRicardoNMPSFurther insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti LParasitol Res201311219538[PubMed][Google Scholar]
  • 43. MotaMLLoboLTCCostaJGMCostaLSRochaHAOSilvaLFRIn vitro and in vivo anti-malarial activity of essential oils and chemical components from three medicinal plants found in Northeastern BrazilPl Med20127865864[Google Scholar]
  • 44. Farias-JuniorPARiosMCMouraTAAlmeidaRPAlvesPBBlankAFLeishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides ChamBiol Res201245399402[PubMed][Google Scholar]
  • 45. TavaresESJuliãoLSLopesDBizzoHRLageCLSLeitãoSGAnálise do óleo essencial de folhas de três quimiotipos de Lippia alba (Mill.) N. E Br (Verbenaceae) cultivados em condições semelhantesRev Bras Farmacog20051515[Google Scholar]
  • 46. JannuzziHMattosJKAVieiraRFSilvaDBBizzoHRGracindoLAMAvaliação agronômica e identificação de quimiotipos de erva cidreira no Distrito FederalHortic Bras2010284127[Google Scholar]
  • 47. KriengkauykiatJItoJIDadwalSSEpidemiology and treatment approaches in management of invasive fungal infectionsClin Epidemiol2011317591[PubMed][Google Scholar]
  • 48. AlvesPBPtakDMKrempserRRKrempserMRCardosoGCSantosRBEfeito analgésico do óleo essencial de Lippia sidoides Cham. (Verbenaceae). Resumos da 282 Reunião Anual da Sociedade Brasileira de Química Minas Gerais2005
  • 49. MarçalRMPtakDMKrempserRRCardosoGCSantosRBBlankAFAlvesPBAntinociceptive effect of the essential oil of Lippia sidoides on micePl Med200672291[Google Scholar]
  • 50. MonteiroMVBLeiteAKRMBertiniLMMoraisSMNunes-PinheiroDCSTopical anti-inflammatory, gastro protective and antioxidant effects of the essential oil of Lippia sidoides Cham. leavesJ Ethnopharmacol200711137882[PubMed][Google Scholar]
  • 51. PereiraSLSPraxedesYCMBastosTCAlencarPNBClinical effect of a gel containing Lippia sidoides on plaque and gingivitis controlEur J Dent201372834[PubMed][Google Scholar]
  • 52. RodriguesISCTavaresVNPereiraSLSCostaFNAntiplaque and antigingivitis effect of Lippia sidoides.A double-blind clinical study in humansJ Appl Oral Sci2009174047[PubMed][Google Scholar]
  • 53. Ministério daSaúdeAgência Nacional de Vigilância Sanitária. Formuláio de Fitoterápicos da Farmacopéia Brasileira2011BrasíliaANVISA
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.