Analysis of glycoside hydrolases from oat (Avena sativa) seedling extract.
Journal: 2019/December - Bioinformation
ISSN: 0973-2063
Abstract:
The abundance and the diversity of oligo- and polysaccharides provide a wide range of biological roles attributed either to these carbohydrates or to their relevant enzymes, i.e., the glycoside hydrolases (GHs). The biocatalysis by these families of enzymes is highly attractive for the generation of products used in potential applications, e.g., pharmaceuticals and food industries. It is thus very important to extract and characterize such enzymes, particularly from plant tissues. In this study, we characterized novel sequences of class I chitinases from seedlings extract of the common oat (Avena sativa L.) using proteomics and sequence-structure-function analysis. These enzymes, which belong to the GH19 family of protein, were extracted from oat and identified using SDS-PAGE, trypsin digestion, LC-MS-MS, and sequence-structure-function analysis. The amino acid sequences of the oat tryptic peptides were used to identify cDNAs from the Avena sativa databases of the expressed sequence tags (ESTs) and transcriptome shotgun assembly (TSA). Based upon the Avena sativa sequences of ESTs and TSA, at least 4 predicted genes that encoded oat class I chitinases were identified and reported. The structural characterization of the oat sequences of chitinases provided valuable insights to the context.
Relations:
Content
References
(46)
Drugs
(1)
Chemicals
(8)
Genes
(2)
Organisms
(1)
Processes
(5)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Bioinformation 15(9): 678-688

Analysis of glycoside hydrolases from oat (Avena sativa) seedling extract

Faculty of Medicine of Sfax, University of Sfax, Sfax-Tunisia
Nihed Ben Halima moc.liamg@amilahnebdehin
Received 2019 Apr 12; Revised 2019 Oct 7; Accepted 2019 Oct 12.
This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.

Abstract

The abundance and the diversity of oligo- and polysaccharides provide a wide range of biological roles attributed either to these carbohydrates or to their relevant enzymes, i.e., the glycoside hydrolases (GHs). The biocatalysis by these families of enzymes is highly attractive for the generation of products used in potential applications, e.g., pharmaceuticals and food industries. It is thus very important to extract and characterize such enzymes, particularly from plant tissues. In this study, we characterized novel sequences of class I chitinases from seedlings extract of the common oat (Avena sativa L.) using proteomics and sequence-structure-function analysis. These enzymes, which belong to the GH19 family of protein, were extracted from oat and identified using SDS-PAGE, trypsin digestion, LC-MS-MS, and sequence-structure-function analysis. The amino acid sequences of the oat tryptic peptides were used to identify cDNAs from the Avena sativa databases of the expressed sequence tags (ESTs) and transcriptome shotgun assembly (TSA). Based upon the Avena sativa sequences of ESTs and TSA, at least 4 predicted genes that encoded oat class I chitinases were identified and reported. The structural characterization of the oat sequences of chitinases provided valuable insights to the context.

Keywords: Avena sativa, Glycoside hydrolases, GH19, Functional proteomics, Mass spectrometry, Bioinformatics analysis
Abstract

Acknowledgments

The author thanks the Tunisian Ministry of Higher Education and Scientific Research for facilities. The author is very grateful to Pr. Slim Abdelkafi and Pr. Chantal Pichon for their previous supervisions. The author would like also to express gratitude to Dr. Guillaume Gabant from the “Plateforme de Spectrométrie de Masse et Protéomique du Centre de Biophysique Moléculaire” (Orleans, France) for mass spectrometry analysis as well as for his precious discussion. The open access charge for this article is sponsored by Biomedical Informatics (P) Ltd, India.

Acknowledgments

The corresponding author states that there is no conflict of interest

Edited by P Kangueane

Citation: Ben Halima et al. Bioinformation 15(9):678-688 (2019)

References

  • 1. Filtenborg O, et al International Journal of Food Microbiology. 1996;33:85.[PubMed][Google Scholar]
  • 2. Henrissat B, Davies G. Current Opinion in Structural Biology. . 1997;7:637.[PubMed]
  • 3. Kasprzewska A. Cellular and Molecular Biology Letters. 2003;8:809.[PubMed]
  • 4. Henrissat B. The Biochemical Journal. 1991;280:309.
  • 5. Henrissat B, Bairoch A. The Biochemical Journal. . 1993;293:781.
  • 6. Arimori T, et al J. Biol. Chem. 2013;288:18696.[Google Scholar]
  • 7. Fujita K, et al Biochem. Biophys. Res. Commun. 2006;345:502.[PubMed][Google Scholar]
  • 8. Lombard V, et al Nucleic Acids Res. 2014;42:D490.[Google Scholar]
  • 9. Munoz-Munoz J, et al PNAS. 2017;1[PubMed][Google Scholar]
  • 10. Ohno T, et al J. Bacteriol. 1996;178:5065.[Google Scholar]
  • 11. Udaya Prakash NA, et al J. Mol. Evol. 2010;70:466.[PubMed][Google Scholar]
  • 12. Junges A, et al PLoS ONE. 2014;9:e107864.[Google Scholar]
  • 13. Sorensen HP, et al Appl. Biochem. Biotechnol. 2010;160:1573.[PubMed][Google Scholar]
  • 14. Ben Halima N, et al J. Oleo Sci. 2015;64:915.[PubMed][Google Scholar]
  • 15. Uno-Okamura K, et al Physiologia Plantarum. 2004;121:117.[PubMed][Google Scholar]
  • 16. Fendri I, et al FEBS J. 2009;276:3076.[PubMed][Google Scholar]
  • 17. Abdelkafi S, et al Biochim. Biophys. Acta. 2009;1791:1048.[PubMed][Google Scholar]
  • 18. Abdelkafi S, et al Gene. 2012;499:243.[PubMed][Google Scholar]
  • 19. Beaufour M, et al J. Proteome Res. 2012;11:3211.[PubMed][Google Scholar]
  • 20. Thompson JD, et al Nucleic Acids Res. 1994;22:4673.[Google Scholar]
  • 21. Altschul SF, et al FEBS J. 2005;272:5101.[Google Scholar]
  • 22. Bairoch A, et al Nucleic Acids Res. 2005;33:154.[Google Scholar]
  • 23. Gasteiger E, et al Nucleic Acids Res. 2003;31:3784.[Google Scholar]
  • 24. Hall TA. Nucl.Acids Symp. Ser. 1999;41:95.[PubMed]
  • 25. Petersen TN, et al Nature Methods. 2011;8:785.[PubMed][Google Scholar]
  • 26. Steentoft C, et al EMBO J. 2013;32:1478.[Google Scholar]
  • 27. Kumar S, et al Molecular Biology and Evolution. 2016;33:1870.[PubMed][Google Scholar]
  • 28. Edgar RC. Nucleic Acids Res. 2004;32:1792.
  • 29. Saitou N, Nei M. Molecular Biology and Evolution. 1987;4:406.[PubMed]
  • 30. PHA Sneath, RR Sokal Numerical Taxonomy: The Principles and Pratice of Numerical Classification. San Francisco: Freeman; 1973. 573 pp. [PubMed][Google Scholar]
  • 31. Jones DT, et al Comput. Appl. Biosci. 1992;8:275.[PubMed][Google Scholar]
  • 32. Felsenstein J. Evolution. 1985;39:783.[PubMed]
  • 33. Bailey TL, Gribskov M. Bioinformatics. 1998;14:48.[PubMed]
  • 34. Bailey TL, et al Nucleic Acids Res. 2015;43:W39.[Google Scholar]
  • 35. Finn RD, et al Nucleic Acids Res. 2014;42:D222.[Google Scholar]
  • 36. Sangrador-Vegas A, et al Database. 2016;pii:27.[Google Scholar]
  • 37. Yu CS, et al Proteins: Structure, Function and Bioinformatics. 2006;64:643.[PubMed][Google Scholar]
  • 38. Geourjon C, Deleage G. Computer applications in the biosciences: CABIOS . 1995;11:681.[PubMed]
  • 39. Fink W, et al Plant Physiol. 1988;88:270.[Google Scholar]
  • 40. Ben Halima N, et al International Journal of Biological Macromolecules. 2015;72:1213.[PubMed][Google Scholar]
  • 41. Ben Halima N, et al Biochimica et Biophysica Acta. 2016;1864:52.[PubMed][Google Scholar]
  • 42. Ben Halima N. International Journal of Biological Macromolecules. 2019;125:361.[PubMed]
  • 43. Jones RL, Varner JE. Planta. 1966;72:155.[PubMed]
  • 44. Altschul SF, et al Nucleic Acids Res. 1997;25:3389.[Google Scholar]
  • 45. Huet J, et al Biochemistry. 2008;47:8283.[PubMed][Google Scholar]
  • 46. Marchler-Bauer A, et al Nucleic Acids Res. 2017;45:200.[Google Scholar]
  • 47. Liu Z, et al The Scientific World Journal. 2013;2013:648382.[Google Scholar]
  • 48. Alvarenga SM, et al Genetics and Molecular Biology. 2010;33:795.[Google Scholar]
  • 49. Landim PGC, et al Biochimie. 2017;135:89.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.