Inhibition of Bruton tyrosine kinase in patients with severe COVID-19
Journal: 2020/June - Science immunology
Abstract:
Patients with severe COVID-19 have a hyperinflammatory immune response suggestive of macrophage activation. Bruton tyrosine kinase (BTK) regulates macrophage signaling and activation. Acalabrutinib, a selective BTK inhibitor, was administered off-label to 19 patients hospitalized with severe COVID-19 (11 on supplemental oxygen; 8 on mechanical ventilation), 18 of whom had increasing oxygen requirements at baseline. Over a 10-14 day treatment course, acalabrutinib improved oxygenation in a majority of patients, often within 1-3 days, and had no discernable toxicity. Measures of inflammation - C-reactive protein and IL-6 - normalized quickly in most patients, as did lymphopenia, in correlation with improved oxygenation. At the end of acalabrutinib treatment, 8/11 (72.7%) patients in the supplemental oxygen cohort had been discharged on room air, and 4/8 (50%) patients in the mechanical ventilation cohort had been successfully extubated, with 2/8 (25%) discharged on room air. Ex vivo analysis revealed significantly elevated BTK activity, as evidenced by autophosphorylation, and increased IL-6 production in blood monocytes from patients with severe COVID-19 compared with blood monocytes from healthy volunteers. These results suggest that targeting excessive host inflammation with a BTK inhibitor is a therapeutic strategy in severe COVID-19 and has led to a confirmatory international prospective randomized controlled clinical trial.
Relations:
Content
Citations
(67)
References
(51)
Diseases
(3)
Conditions
(2)
Drugs
(1)
Chemicals
(7)
Organisms
(1)
Processes
(2)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Sci Immunol 5(48): eabd0110

Inhibition of Bruton tyrosine kinase in patients with severe COVID-19

+10 authors
Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD; Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD; Willamette Valley Cancer Institute and Research Center, US Oncology, Eugene, OR; Hematology-Oncology Department, Walter Reed National Military Medical Center, Bethesda, MD; John Theurer Cancer Center, Hackensack Meridian and School of Medicine at Seton Hall, NJ; Rocky Mountain Cancer Center, US Oncology, Colorado Springs, CO; Department of Emergency Medicine, Penrose-St. Francis Health Services, Colorado Springs, CO; US Acute Care Solutions, Canton, OH; Department of Medicine, St. Peter’s Hospital and US Oncology, Albany, NY; Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Acerta Pharma, South San Francisco, CA; Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA AstraZeneca, One MedImmune Way, Gaithersburg, MD
These authors contributed equally to the manuscript.
Co-senior authors
Corresponding Author: Wyndham H. Wilson, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room 4N115, National Institutes of Health, Bethesda, MD 20892. Email: vog.hin.liam@wnosliw
Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD; Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD; Willamette Valley Cancer Institute and Research Center, US Oncology, Eugene, OR; Hematology-Oncology Department, Walter Reed National Military Medical Center, Bethesda, MD; John Theurer Cancer Center, Hackensack Meridian and School of Medicine at Seton Hall, NJ; Rocky Mountain Cancer Center, US Oncology, Colorado Springs, CO; Department of Emergency Medicine, Penrose-St. Francis Health Services, Colorado Springs, CO; US Acute Care Solutions, Canton, OH; Department of Medicine, St. Peter’s Hospital and US Oncology, Albany, NY; Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; Acerta Pharma, South San Francisco, CA; Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA AstraZeneca, One MedImmune Way, Gaithersburg, MD
Received 2020 May 26; Accepted 2020 Jun 3.
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Abstract

Patients with severe COVID-19 have a hyperinflammatory immune response suggestive of macrophage activation. Bruton tyrosine kinase (BTK) regulates macrophage signaling and activation. Acalabrutinib, a selective BTK inhibitor, was administered off-label to 19 patients hospitalized with severe COVID-19 (11 on supplemental oxygen; 8 on mechanical ventilation), 18 of whom had increasing oxygen requirements at baseline. Over a 10-14 day treatment course, acalabrutinib improved oxygenation in a majority of patients, often within 1-3 days, and had no discernable toxicity. Measures of inflammation – C-reactive protein and IL-6 – normalized quickly in most patients, as did lymphopenia, in correlation with improved oxygenation. At the end of acalabrutinib treatment, 8/11 (72.7%) patients in the supplemental oxygen cohort had been discharged on room air, and 4/8 (50%) patients in the mechanical ventilation cohort had been successfully extubated, with 2/8 (25%) discharged on room air. Ex vivo analysis revealed significantly elevated BTK activity, as evidenced by autophosphorylation, and increased IL-6 production in blood monocytes from patients with severe COVID-19 compared with blood monocytes from healthy volunteers. These results suggest that targeting excessive host inflammation with a BTK inhibitor is a therapeutic strategy in severe COVID-19 and has led to a confirmatory international prospective randomized controlled clinical trial.

Acknowledgments

ACKNOWLEDGMENTS: The authors would like to thank all the patients and their caregivers who consented to release their clinical results for publication. We thank Norman E. “Ned” Sharpless for helpful discussions and advice. We acknowledge Michael Abers for illustration support. We would like to thank Dr. Daniel Chertow and Dr. Richard Davey from the NIAID/NIH and Dr. Marc Siegel from George Washington University Hospital for providing samples from COVID-19 patients for immunological analyses and Ms. Joie Davis from the NIAID/NIH for her assistance with obtaining informed consent from some of the COVID-19 patients who underwent immunological analyses at NIAID. We also would like to acknowledge additional health care providers who cared for these patients during their hospitalization and participated in the clinical decision-making process to use off-label acalabrutinib, including Jeffery Gray, Adam Barelski, and Jessica Bunin from Walter Reed National Military Medical Center; Caryn Baldauf, J. Daniel Monticelli, Russell M. Lee, Andrew Ingram, Elizabeth A. Kleiner, and Thomas J. Bartlett from Penrose Hospital; Timothy J. Murphy, and Matthew Logsdon from Rocky Mountain Cancer Center; Ihor Sawchuck, Robert Lee, Anuja Pradhan Ronak Shah, and Ali Nadeem from Hackensack University Medical Center; Ira Zackon, Lawrence Garbo, Qin Zen, John Phelan, Amy Zuchelkowski, and Nancy Egerton from New York Oncology Hematology and US Oncology; and Anwar Haque and Philip Palmieri from St. Peter’s Hospital. We specifically acknowledge all health care workers who have taken care of these patients and collected data. Funding: This work is supported by the Intramural Research Program of the National Institutes of Health: National Cancer Institute, Center for Cancer Research and National Institute of Allergy & Infectious Diseases. Individual hospitals provided commercial supply of the study drug for off-label use. Author contributions: The Lymphoid Malignancies Branch, National Cancer Institute, and the National Institute of Allergy & Infectious Diseases of National Institutes of Health provided academic input for this study. W.H.W, M.R., and L.M.S designed the study. M.R, J.P.S, J.R., A.G., M.A.M., M.R., S.W., K.R. J.C., and K.K.C. treated patients and collected data; M.S.L. designed and analyzed the correlative immunological experiments. J.V.D. and M.A.Z. performed the correlative laboratory experiments. M.R, J.P.S, J.R., A.G., M.A.M., M.R., S.W., J.C., A.H., R.I., K.K.C, M.S.L., J.B., L.M.S., and W.H.W. analyzed the data; W.H.W, M.R., and L.M.S wrote the paper. No medical writer was used. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Defense. Competing interests: A.H. and R.I. are current or past employees of Acerta Pharma, a majority-owned subsidiary of AstraZeneca, and have received salary and stock compensation from Acerta Pharma. A.H. and R.I. are listed as inventors on patents on acalabrutinib assigned to Acerta Pharma. R.I. also has an equity position in AstraZeneca. J.B. is an employee of AstraZeneca and has received salary, stock compensation and personal fees from AstraZeneca. The other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate and reproduce the conclusions in this paper are present in the main text or the Supplementary Materials. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

SUPPLEMENTARY MATERIALS

immunology.sciencemag.org/cgi/content/full/5/48/eabd0110/DC1

Supplementary Methods (instructions on preparation of acalabrutinib for an enteric feeding tube)

Figure S1. Gating strategy for flow cytometric analysis of phosphorylated and total BTK.

Figure S2. Gating strategy for flow cytometric analysis of IL-6.

Table S1. Treatment centers.

Table S2. Clinical course of supplemental oxygen cohort.

Table S3. Clinical course of mechanical ventilation cohort.

Table S4. Laboratory tests for inflammatory markers during acalabrutinib treatment in supplemental oxygen cohort.

Table S5. Laboratory tests for inflammatory markers during acalabrutinib treatment in mechanical ventilation cohort.

Table S6. Other laboratory tests during acalabrutinib treatment in supplemental oxygen cohort.

Table S7. Other laboratory tests during acalabrutinib treatment in mechanical ventilation cohort.

Table S8. Statistical analysis of laboratory changes related to oxygenation status.

Table S9. Adverse events of special interest during treatment with acalabrutinib.

Table S10. Characteristics of COVID-19 patients who underwent flow cytometry-based immunological analyses.

Table S11. Raw data file (Excel spreadsheet).

immunology.sciencemag.org/cgi/content/full/5/48/eabd0110/DC1

Supplementary Methods (instructions on preparation of acalabrutinib for an enteric feeding tube)

Figure S1. Gating strategy for flow cytometric analysis of phosphorylated and total BTK.

Figure S2. Gating strategy for flow cytometric analysis of IL-6.

Table S1. Treatment centers.

Table S2. Clinical course of supplemental oxygen cohort.

Table S3. Clinical course of mechanical ventilation cohort.

Table S4. Laboratory tests for inflammatory markers during acalabrutinib treatment in supplemental oxygen cohort.

Table S5. Laboratory tests for inflammatory markers during acalabrutinib treatment in mechanical ventilation cohort.

Table S6. Other laboratory tests during acalabrutinib treatment in supplemental oxygen cohort.

Table S7. Other laboratory tests during acalabrutinib treatment in mechanical ventilation cohort.

Table S8. Statistical analysis of laboratory changes related to oxygenation status.

Table S9. Adverse events of special interest during treatment with acalabrutinib.

Table S10. Characteristics of COVID-19 patients who underwent flow cytometry-based immunological analyses.

Table S11. Raw data file (Excel spreadsheet).

References and Notes

References

  • 1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W. J., Wang D., Xu W., Holmes E. C., Gao G. F., Wu G., Chen W., Shi W., Tan W., Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet395, 565–574 (2020). 10.1016/S0140-6736(20)30251-8 ] [
  • 2. Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., Liu L., Shan H., Lei C. L., Hui D. S. C., Du B., Li L. J., Zeng G., Yuen K. Y., Chen R. C., Tang C. L., Wang T., Chen P. Y., Xiang J., Li S. Y., Wang J. L., Liang Z. J., Peng Y. X., Wei L., Liu Y., Hu Y. H., Peng P., Wang J. M., Liu J. Y., Chen Z., Li G., Zheng Z. J., Qiu S. Q., Luo J., Ye C. J., Zhu S. Y., Zhong N. S.; China Medical Treatment Expert Group for Covid-19 , Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med.382, 1708–1720 (2020). 10.1056/NEJMoa2002032 ] [
  • 3. Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis.20, 425–434 (2020). 10.1016/S1473-3099(20)30086-4 ] [
  • 4. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G., COVID-19 infection: The perspectives on immune responses. Cell Death Differ.27, 1451–1454 (2020). 10.1038/s41418-020-0530-3 ] [
  • 5. Conti P., Ronconi G., Caraffa A., Gallenga C. E., Ross R., Frydas I., Kritas S. K., Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents34, (2020). [[PubMed]
  • 6. Channappanavar R., Fehr A. R., Vijay R., Mack M., Zhao J., Meyerholz D. K., Perlman S., Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe19, 181–193 (2016). 10.1016/j.chom.2016.01.007 ] [
  • 7. Huang K. J., Su I. J., Theron M., Wu Y. C., Lai S. K., Liu C. C., Lei H. Y., An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol.75, 185–194 (2005). 10.1002/jmv.20255 ] [
  • 8. Wong C. K., Lam C. W., Wu A. K., Ip W. K., Lee N. L., Chan I. H., Lit L. C., Hui D. S., Chan M. H., Chung S. S., Sung J. J., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol.136, 95–103 (2004). 10.1111/j.1365-2249.2004.02415.x ] [
  • 9. Yoshikawa T., Hill T., Li K., Peters C. J., Tseng C. T., Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J. Virol.83, 3039–3048 (2009). 10.1128/JVI.01792-08 ] [
  • 10. Herold S., Becker C., Ridge K. M., Budinger G. R., Influenza virus-induced lung injury: Pathogenesis and implications for treatment. Eur. Respir. J.45, 1463–1478 (2015). 10.1183/09031936.00186214 [] [[PubMed]
  • 11. Luo P., Liu Y., Qiu L., Liu X., Liu D., Li J., Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol.2020, ••• (2020). 10.1002/jmv.25801 ] [
  • 12. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395, 497–506 (2020). 10.1016/S0140-6736(20)30183-5 ] [
  • 13. Bracaglia C., Prencipe G., De Benedetti F., Macrophage Activation Syndrome: Different mechanisms leading to a one clinical syndrome. Pediatr. Rheumatol. Online J.15, 5 (2017). 10.1186/s12969-016-0130-4 ] [
  • 14. Lionakis M. S., Dunleavy K., Roschewski M., Widemann B. C., Butman J. A., Schmitz R., Yang Y., Cole D. E., Melani C., Higham C. S., Desai J. V., Ceribelli M., Chen L., Thomas C. J., Little R. F., Gea-Banacloche J., Bhaumik S., Stetler-Stevenson M., Pittaluga S., Jaffe E. S., Heiss J., Lucas N., Steinberg S. M., Staudt L. M., Wilson W. H., Inhibition of B Cell Receptor Signaling by Ibrutinib in Primary CNS Lymphoma. Cancer Cell31, 833–843.e5 (2017). 10.1016/j.ccell.2017.04.012 ] [
  • 15. Lionakis M. S., Kontoyiannis D. P., Glucocorticoids and invasive fungal infections. Lancet362, 1828–1838 (2003). 10.1016/S0140-6736(03)14904-5 [] [[PubMed]
  • 16. Lionakis M. S., Levitz S. M., Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu. Rev. Immunol.36, 157–191 (2018). 10.1146/annurev-immunol-042617-053318 [] [[PubMed]
  • 17. Yao X. H., Li T. Y., He Z. C., Ping Y. F., Liu H. W., Yu S. C., Mou H. M., Wang L. H., Zhang H. R., Fu W. J., Luo T., Liu F., Chen C., Xiao H. L., Guo H. T., Lin S., Xiang D. F., Shi Y., Li Q. R., Huang X., Cui Y., Li X. Z., Tang W., Pan P. F., Huang X. Q., Ding Y. Q., Bian X. W., Zhonghua Bing Li Xue Za Zhi49, E009 (2020) [A pathological report of three COVID-19 cases by minimally invasive autopsies]. [[PubMed]
  • 18. Buja L. M., Wolf D. A., Zhao B., Akkanti B., McDonald M., Lelenwa L., Reilly N., Ottaviani G., Elghetany M. T., Trujillo D. O., Aisenberg G. M., Madjid M., Kar B., The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc. Pathol.48, 107233 (2020). 10.1016/j.carpath.2020.107233 ] [
  • 19. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., Wei Q., Yu P., Xu Y., Qi F., Qu Y., Li F., Lv Q., Wang W., Xue J., Gong S., Liu M., Wang G., Wang S., Song Z., Zhao L., Liu P., Zhao L., Ye F., Wang H., Zhou W., Zhu N., Zhen W., Yu H., Zhang X., Guo L., Chen L., Wang C., Wang Y., Wang X., Xiao Y., Sun Q., Liu H., Zhu F., Ma C., Yan L., Yang M., Han J., Xu W., Tan W., Peng X., Jin Q., Wu G., Qin C., The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature (2020). 10.1038/s41586-020-2312-y [] [[PubMed]
  • 20. Page T. H., Urbaniak A. M., Espirito Santo A. I., Danks L., Smallie T., Williams L. M., Horwood N. J., Bruton’s tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment. Biochem. Biophys. Res. Commun.499, 260–266 (2018). 10.1016/j.bbrc.2018.03.140 ] [
  • 21. Tatematsu M., Nishikawa F., Seya T., Matsumoto M., Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat. Commun.4, 1833 (2013). 10.1038/ncomms2857 [] [[PubMed]
  • 22. Byrne J. C., Ní Gabhann J., Stacey K. B., Coffey B. M., McCarthy E., Thomas W., Jefferies C. A., Bruton’s tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. J. Immunol.190, 5207–5215 (2013). 10.4049/jimmunol.1300057 [] [[PubMed]
  • 23. Feng M., Chen J. Y., Weissman-Tsukamoto R., Volkmer J. P., Ho P. Y., McKenna K. M., Cheshier S., Zhang M., Guo N., Gip P., Mitra S. S., Weissman I. L., Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. Proc. Natl. Acad. Sci. U.S.A.112, 2145–2150 (2015). 10.1073/pnas.1424907112 ] [
  • 24. Liu X., Pichulik T., Wolz O. O., Dang T. M., Stutz A., Dillen C., Delmiro Garcia M., Kraus H., Dickhöfer S., Daiber E., Münzenmayer L., Wahl S., Rieber N., Kümmerle-Deschner J., Yazdi A., Franz-Wachtel M., Macek B., Radsak M., Vogel S., Schulte B., Walz J. S., Hartl D., Latz E., Stilgenbauer S., Grimbacher B., Miller L., Brunner C., Wolz C., Weber A. N. R., Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J. Allergy Clin. Immunol.140, 1054–1067.e10 (2017). 10.1016/j.jaci.2017.01.017 [] [[PubMed]
  • 25. Ito M., Shichita T., Okada M., Komine R., Noguchi Y., Yoshimura A., Morita R., Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun.6, 7360 (2015). 10.1038/ncomms8360 ] [
  • 26. Bittner Z. A., Liu X., Shankar S., Tapia-Abellán A., Kalbacher H., Andreeva L., Mangan M., Düwell P., Lovotti M., Bosch K., Dickhöfer S., Marcu A., Stevanović S., Herster F., Löffler M. W., Wolz O.-O., Schilling N. A., Kümmerle-Deschner J., Wagner S., Delor A., Grimbacher B., Wu H., Latz E., Weber A. N. R., BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity. bioRxiv (2020); . [PubMed]
  • 27. Florence J. M., Krupa A., Booshehri L. M., Davis S. A., Matthay M. A., Kurdowska A. K., Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.315, L52–L58 (2018). 10.1152/ajplung.00047.2018 ] [
  • 28. Wang M., Rule S., Zinzani P. L., Goy A., Casasnovas O., Smith S. D., Damaj G., Doorduijn J., Lamy T., Morschhauser F., Panizo C., Shah B., Davies A., Eek R., Dupuis J., Jacobsen E., Kater A. P., Le Gouill S., Oberic L., Robak T., Covey T., Dua R., Hamdy A., Huang X., Izumi R., Patel P., Rothbaum W., Slatter J. G., Jurczak W., Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): A single-arm, multicentre, phase 2 trial. Lancet391, 659–667 (2018). 10.1016/S0140-6736(17)33108-2 [] [[PubMed]
  • 29. Guidance for managing ethical issues in infectious disease outbreaksWorld Health Organization (9789241549837, 2016 ).[PubMed]
  • 30. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet395, 507–513 (2020). 10.1016/S0140-6736(20)30211-7 ] [
  • 31. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA323, 1061 (2020). 10.1001/jama.2020.1585 ] [
  • 32. Kamphuis E., Junt T., Waibler Z., Forster R., Kalinke U., Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood108, 3253–3261 (2006). 10.1182/blood-2006-06-027599 [] [[PubMed]
  • 33. Byrd J. C., Harrington B., O’Brien S., Jones J. A., Schuh A., Devereux S., Chaves J., Wierda W. G., Awan F. T., Brown J. R., Hillmen P., Stephens D. M., Ghia P., Barrientos J. C., Pagel J. M., Woyach J., Johnson D., Huang J., Wang X., Kaptein A., Lannutti B. J., Covey T., Fardis M., McGreivy J., Hamdy A., Rothbaum W., Izumi R., Diacovo T. G., Johnson A. J., Furman R. R., Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med.374, 323–332 (2016). 10.1056/NEJMoa1509981 ] [
  • 34. Barf T., Covey T., Izumi R., van de Kar B., Gulrajani M., van Lith B., van Hoek M., de Zwart E., Mittag D., Demont D., Verkaik S., Krantz F., Pearson PG., Ulrich R., Kaptein A., Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile. J. Pharmacol. Exp. Ther.363, 240–252 (2017). 10.1124/jpet.117.242909 [] [[PubMed][Google Scholar]
  • 35. Ahn IE., Jerussi T., Farooqui M., Tian X., Wiestner A., Gea-Banacloche J., Atypical Pneumocystis jirovecii pneumonia in previously untreated patients with CLL on single-agent ibrutinib. Blood128, 1940–1943 (2016). 10.1182/blood-2016-06-722991 ] [[Google Scholar]
  • 36. Russell C. D., Millar J. E., Baillie J. K., Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet395, 473–475 (2020). 10.1016/S0140-6736(20)30317-2 ] [
  • 37. Treon S. P., Castillo J. J., Skarbnik A. P., Soumerai J. D., Ghobrial I. M., Guerrera M. L., Meid K., Yang G., The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood135, 1912–1915 (2020). 10.1182/blood.2020006288 ] [
  • 38. Garg S., Kim L., Whitaker M., O’Halloran A., Cummings C., Holstein R., Prill M., Chai S. J., Kirley P. D., Alden N. B., Kawasaki B., Yousey-Hindes K., Niccolai L., Anderson E. J., Openo K. P., Weigel A., Monroe M. L., Ryan P., Henderson J., Kim S., Como-Sabetti K., Lynfield R., Sosin D., Torres S., Muse A., Bennett N. M., Billing L., Sutton M., West N., Schaffner W., Talbot H. K., Aquino C., George A., Budd A., Brammer L., Langley G., Hall A. J., Fry A., Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb. Mortal. Wkly. Rep.69, 458–464 (2020). 10.15585/mmwr.mm6915e3 [] [[PubMed]
  • 39. Owen C., Berinstein N. L., Christofides A., Sehn L. H., Review of Bruton tyrosine kinase inhibitors for the treatment of relapsed or refractory mantle cell lymphoma. Curr. Oncol.26, e233–e240 (2019). 10.3747/co.26.4345 ] [
  • 40. Crayne C. B., Albeituni S., Nichols K. E., Cron R. Q., The Immunology of Macrophage Activation Syndrome. Front. Immunol.10, 119 (2019). 10.3389/fimmu.2019.00119 ] [
  • 41. Volmering S., Block H., Boras M., Lowell CA., Zarbock A., The Neutrophil Btk Signalosome Regulates Integrin Activation during Sterile Inflammation. Immunity44, 73–87 (2016). 10.1016/j.immuni.2015.11.011 ] [[Google Scholar]
  • 42. Pasquet J. M., Quek L., Stevens C., Bobe R., Huber M., Duronio V., Krystal G., Watson S. P., Phosphatidylinositol 3,4,5-trisphosphate regulates Ca(2+) entry via btk in platelets and megakaryocytes without increasing phospholipase C activity. EMBO J.19, 2793–2802 (2000). 10.1093/emboj/19.12.2793 ] [
  • 43. Nicolson P. L. R., Nock S. H., Hinds J., Garcia-Quintanilla L., Smith C. W., Campos J., Brill A., Pike J. A., Khan A. O., Poulter N. S., Kavanagh D. M., Watson S., Watson C. N., Clifford H., Huissoon A. P., Pollitt A. Y., Eble J. A., Pratt G., Watson S. P., Hughes C. E., Low dose Btk inhibitors selectively block platelet activation by CLEC-2. Haematologica haematol.2019.218545 (2020). 10.3324/haematol.2019.218545 [] [[PubMed]
  • 44. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., Cereda D., Coluccello A., Foti G., Fumagalli R., Iotti G., Latronico N., Lorini L., Merler S., Natalini G., Piatti A., Ranieri M. V., Scandroglio A. M., Storti E., Cecconi M., Pesenti A., Nailescu A., Corona A., Zangrillo A., Protti A., Albertin A., Forastieri Molinari A., Lombardo A., Pezzi A., Benini A., Scandroglio A. M., Malara A., Castelli A., Coluccello A., Micucci A., Pesenti A., Sala A., Alborghetti A., Antonini B., Capra C., Troiano C., Roscitano C., Radrizzani D., Chiumello D., Coppini D., Guzzon D., Costantini E., Malpetti E., Zoia E., Catena E., Agosteo E., Barbara E., Beretta E., Boselli E., Storti E., Harizay F., Della Mura F., Lorini F. L., Donato Sigurtà F., Marino F., Mojoli F., Rasulo F., Grasselli G., Casella G., De Filippi G., Castelli G., Aldegheri G., Gallioli G., Lotti G., Albano G., Landoni G., Marino G., Vitale G., Battista Perego G., Evasi G., Citerio G., Foti G., Natalini G., Merli G., Sforzini I., Bianciardi L., Carnevale L., Grazioli L., Cabrini L., Guatteri L., Salvi L., Dei Poli M., Galletti M., Gemma M., Ranucci M., Riccio M., Borelli M., Zambon M., Subert M., Cecconi M., Mazzoni M. G., Raimondi M., Panigada M., Belliato M., Bronzini N., Latronico N., Petrucci N., Belgiorno N., Tagliabue P., Cortellazzi P., Gnesin P., Grosso P., Gritti P., Perazzo P., Severgnini P., Ruggeri P., Sebastiano P., Covello R. D., Fernandez-Olmos R., Fumagalli R., Keim R., Rona R., Valsecchi R., Cattaneo S., Colombo S., Cirri S., Bonazzi S., Greco S., Muttini S., Langer T., Alaimo V., Viola U.; COVID-19 Lombardy ICU Network , Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA323, 1574 (2020). 10.1001/jama.2020.5394 ] [
  • 45. Guo H., Callaway J. B., Ting J. P., Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med.21, 677–687 (2015). 10.1038/nm.3893 ] [
  • 46. Strowig T., Henao-Mejia J., Elinav E., Flavell R., Inflammasomes in health and disease. Nature481, 278–286 (2012). 10.1038/nature10759 [] [[PubMed]
  • 47. Netea M. G., Domínguez-Andrés J., Barreiro L. B., Chavakis T., Divangahi M., Fuchs E., Joosten L. A. B., van der Meer J. W. M., Mhlanga M. M., Mulder W. J. M., Riksen N. P., Schlitzer A., Schultze J. L., Stabell Benn C., Sun J. C., Xavier R. J., Latz E., Defining trained immunity and its role in health and disease. Nat. Rev. Immunol.20, 375–388 (2020). 10.1038/s41577-020-0285-6 ] [
  • 48. Joyce E., Fabre A., Mahon N., Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: Key diagnostic features and literature review. Eur. Heart J. Acute Cardiovasc. Care2, 77–83 (2013). 10.1177/2048872612471215 ] [
  • 49. Spada C., Gandhi R., Patel S. R., Nuccio P., Weinhouse G. L., Lee P. S., Oxygen saturation/fraction of inspired oxygen ratio is a simple predictor of noninvasive positive pressure ventilation failure in critically ill patients. J. Crit. Care26, 510–516 (2011). 10.1016/j.jcrc.2010.08.015 ] [
  • 50. Bates D., Mächler M., Bolker B., Walker S., Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw.67, 1–48 (2015). 10.18637/jss.v067.i01 [[PubMed]
  • 51. Sun L., Liu S., Chen ZJ., SnapShot: Pathways of antiviral innate immunity. Cell140, 436–436.e2 (2010). 10.1016/j.cell.2010.01.041 ] [[Google Scholar]
  • 52. Weber A. N. R., Bittner Z., Liu X., Dang T. M., Radsak M. P., Brunner C., Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity. Front. Immunol.8, 1454 (2017). 10.3389/fimmu.2017.01454 ] [
  • 53. Chang B. Y., Huang M. M., Francesco M., Chen J., Sokolove J., Magadala P., Robinson W. H., Buggy J. J., The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res. Ther.13, R115 (2011). 10.1186/ar3400 ] [
  • 54. Atianand M. K., Rathinam V. A., Fitzgerald K. A., SnapShot: Inflammasomes. Cell153, 272–272.e1 (2013). 10.1016/j.cell.2013.03.009 [] [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.