Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma.
Journal: 2016/February - Cancer Biology and Therapy
ISSN: 1555-8576
Abstract:
The c-Met protein, a transmembrane receptor tyrosine kinase, is the product of a proto-oncogene. Its only known ligand, hepatocyte growth factor (HGF), regulates cell growth, motility, migration, invasion, proliferation, and angiogenesis. The aberrant expression of c-Met is often associated with poor prognosis in multiple cancers, including renal cell carcinoma (RCC). Silencing or inactivation of c-Met leads to decreased viability of cancer cells, thereby making ablation of c-Met signaling an attractive concept for developing novel strategies for the treatment of renal tumors. Naturally-occurring products or substances are the most consistent source of drug development. As such, we investigated the functional impact of piperlongumine (PL), a naturally occurring alkaloid present in the Long pepper (Piper longum) on c-Met expression in RCC cells and demonstrated that PL and its analogs rapidly reduce c-Met protein and RNA levels in RCC cells via ROS-dependent mechanism. PL-mediated c-Met depletion coincided with the inhibition of downstream c-Met signaling; namely Erk/MAPK, STAT3, NF-κB and Akt/mTOR. As such, PL and PL analogs hold promise as potential therapeutic agents for the treatment of metastatic RCC and the prevention of postoperative RCC recurrence.
Relations:
Content
Citations
(6)
References
(40)
Diseases
(1)
Drugs
(1)
Chemicals
(3)
Organisms
(3)
Processes
(2)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Cancer Biol Ther 16(5): 743-749

Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma

Abbreviations

Erk
Extracellular signal-regulated kinase
FAK
Focal adhesion kinase
HGF
Hepatocyte growth factor
MAPK
Mitogen-activated protein kinase
mTOR
Mammalian target of rapamycin
NF-kB
Nuclear factor kappaB
PL
Piperlongumine
PL-Di
PL-Dimer
PL-FPh
PL-fluorophenyl
RCC
Renal cell carcinoma
RECIST
Response evaluation criteria in solid tumors
RNA
Ribonucleic acid
ROS
Reactive oxygen species
STAT
Signal transducer and activator of transcription
TKIs
Tyrosine kinase inhibitors
VEGFR
Vascular endothelial growth factor receptor
Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
Division of Urologic Oncology; Department of Surgery; Fox Chase Cancer Center; Philadelphia, PA, USA
Cancer Epigenetics Program; Fox Chase Cancer Center; Philadelphia, PA, USA
Correspondence to: Vladimir M Kolenko; Email: ude.cccf@okneloK.rimidalV
Received 2015 Feb 27; Accepted 2015 Mar 1.

Abstract

The c-Met protein, a transmembrane receptor tyrosine kinase, is the product of a proto-oncogene. Its only known ligand, hepatocyte growth factor (HGF), regulates cell growth, motility, migration, invasion, proliferation, and angiogenesis. The aberrant expression of c-Met is often associated with poor prognosis in multiple cancers, including renal cell carcinoma (RCC). Silencing or inactivation of c-Met leads to decreased viability of cancer cells, thereby making ablation of c-Met signaling an attractive concept for developing novel strategies for the treatment of renal tumors. Naturally-occurring products or substances are the most consistent source of drug development. As such, we investigated the functional impact of piperlongumine (PL), a naturally occurring alkaloid present in the Long pepper (Piper longum) on c-Met expression in RCC cells and demonstrated that PL and its analogs rapidly reduce c-Met protein and RNA levels in RCC cells via ROS-dependent mechanism. PL-mediated c-Met depletion coincided with the inhibition of downstream c-Met signaling; namely Erk/MAPK, STAT3, NF-κB and Akt/mTOR. As such, PL and PL analogs hold promise as potential therapeutic agents for the treatment of metastatic RCC and the prevention of postoperative RCC recurrence.

Keywords: c-Met, cancer, piperlongumine, renal, ROS
Abstract

References

  • 1. Levy DA, Slaton JW, Swanson DA, Dinney CP. Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. J Urol 1998; 159(4):1163-7; PMID:9507823; http://dx.doi.org/10.1016/S0022-5347(01)63541-9 [] [[PubMed]
  • 2. Sorbellini M, Kattan MW, Snyder ME, Reuter V, Motzer R, Goetzl M, McKiernan J, Russo P. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol 2005; 173(1):48-51; PMID:15592023; http://dx.doi.org/10.1097/01.ju.0000148261.19532.2c [] [[PubMed]
  • 3. Flanigan RC, Campbell SC, Clark JI, Picken MM. Metastatic renal cell carcinoma. Curr Treat Options Oncol 2003; 4(5):385-90; PMID:12941198; http://dx.doi.org/10.1007/s11864-003-0039-2 [] [[PubMed]
  • 4. Rini BI. Metastatic renal cell carcinoma: many treatment options, one patient. J Clin Oncol 2009; 27(19):3225-34; PMID:19470934; http://dx.doi.org/10.1200/JCO.2008.19.9836 [] [[PubMed]
  • 5. Rini BI. New strategies in kidney cancer: therapeutic advances through understanding the molecular basis of response and resistance. Clin Cancer Res 2010; 16(5):1348-54; PMID:20179240; http://dx.doi.org/10.1158/1078-0432.CCR-09-2273 [] [[PubMed]
  • 6. Gibney GT, Aziz SA, Camp RL, Conrad P, Schwartz BE, Chen CR, Kelly WK, Kluger HM. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol 2013; 24(2):343-9; PMID:23022995; http://dx.doi.org/10.1093/annonc/mds463 ] [
  • 7. Giubellino A, Linehan WM, Bottaro DP. Targeting the Met signaling pathway in renal cancer. Expert Rev Anticancer Ther 2009; 9(6):785-93; PMID:19496715; http://dx.doi.org/10.1586/era.09.43 ] [
  • 8. Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5(7); PMID:23818496; http://dx.doi.org/10.1101/cshperspect.a009209 ] [
  • 9. Harshman LC, Choueiri TK. Targeting the hepatocyte growth factor/c-Met signaling pathway in renal cell carcinoma. Cancer J 2013; 19(4):316-23; PMID:23867513; http://dx.doi.org/10.1097/PPO.0b013e31829e3c9a [] [[PubMed]
  • 10. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15(7):2207-14; PMID:19318488; http://dx.doi.org/10.1158/1078-0432.CCR-08-1306 [] [[PubMed]
  • 11. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316(5827):1039-43; PMID:17463250; http://dx.doi.org/10.1126/science.1141478 [] [[PubMed][Google Scholar]
  • 12. Qi J, McTigue MA, Rogers A, Lifshits E, Christensen JG, Janne PA, Engelman JA. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res 2011; 71(3):1081-91; PMID:21266357; http://dx.doi.org/10.1158/0008-5472.CAN-10-1623 ] [
  • 13. Bezerra DP, Pessoa C, Moraes MO, Alencar NM, Mesquita RO, Lima MW, Alves AP, Pessoa OD, Chaves JH, Silveira ER, et al. In vivo growth inhibition of sarcoma 180 by piperlonguminine, an alkaloid amide from the Piper species. J Appl Toxicol 2008; 28(5):599-607; PMID:17975786; http://dx.doi.org/10.1002/jat.1311 [] [[PubMed][Google Scholar]
  • 14. Morikawa T, Matsuda H, Yamaguchi I, Pongpiriyadacha Y, Yoshikawa M. New amides and gastroprotective constituents from the fruit of Piper chaba. Planta Med 2004; 70(2):152-9; PMID:14994194; http://dx.doi.org/10.1055/s-2004-815493 [] [[PubMed]
  • 15. Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003; 99(1):1-13; PMID:12804695; http://dx.doi.org/10.1016/S0163-7258(03)00042-1 [] [[PubMed]
  • 16. Golovine KV, Makhov PB, Teper E, Kutikov A, Canter D, Uzzo RG, Kolenko VM. Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells. Prostate 2013; 73(1):23-30; PMID:22592999; http://dx.doi.org/10.1002/pros.22535 ] [
  • 17. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475(7355):231-4; PMID:21753854; http://dx.doi.org/10.1038/nature10167 ] [[Google Scholar]
  • 18. Ginzburg S, Golovine KV, Makhov PB, Uzzo RG, Kutikov A, Kolenko VM. Piperlongumine inhibits NF-kappaB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate 2014; 74(2):177-86; PMID:24151226; http://dx.doi.org/10.1002/pros.22739 ] [
  • 19. Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, Tulin A, Uzzo RG, Kolenko VM. Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer 2014; 110(4):899-907; PMID:24434432
  • 20. Makhov PB, Golovine K, Kutikov A, Teper E, Canter DJ, Simhan J, Uzzo RG, Kolenko VM. Modulation of Akt/mTOR signaling overcomes sunitinib resistance in renal and prostate cancer cells. Mol Cancer Ther 2012; 11(7):1510-7; PMID:22532600; http://dx.doi.org/10.1158/1535-7163.MCT-11-0907 ] [
  • 21. Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, Schreiber SL. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc Natl Acad Sci U S A 2012; 109(38):15115-20; PMID:22949699; http://dx.doi.org/10.1073/pnas.1212802109 ] [
  • 22. Choueiri TK, Vaishampayan U, Rosenberg JE, Logan TF, Harzstark AL, Bukowski RM, Rini BI, Srinivas S, Stein MN, Adams LM, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 2013; 31(2):181-6; PMID:23213094; http://dx.doi.org/10.1200/JCO.2012.43.3383 ] [[Google Scholar]
  • 23. Rosen LS, Senzer N, Mekhail T, Ganapathi R, Chai F, Savage RE, Waghorne C, Abbadessa G, Schwartz B, Dreicer R. A phase I dose-escalation study of Tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clin Cancer Res 2011; 17(24):7754-64; PMID:21976535; http://dx.doi.org/10.1158/1078-0432.CCR-11-1002 [] [[PubMed]
  • 24. Schoffski P, Garcia JA, Stadler WM, Gil T, Jonasch E, Tagawa ST, Smitt M, Yang X, Oliner KS, Anderson A, et al. A phase II study of the efficacy and safety of AMG 102 in patients with metastatic renal cell carcinoma. BJU Int 2011; 108(5):679-86; PMID:21156020 [[PubMed][Google Scholar]
  • 25. Wagner AJ, Goldberg JM, Dubois SG, Choy E, Rosen L, Pappo A, Geller J, Judson I, Hogg D, Senzer N, et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 2012; 118(23):5894-902; PMID:22605650; http://dx.doi.org/10.1002/cncr.27582 [] [[PubMed][Google Scholar]
  • 26. Choueiri TK, Pal SK, McDermott DF, Ramies DA, Morrissey S, Lee Y, Miles D, Holland JS, Dutcher JP Activity of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). J Clin Oncol 2012; suppl 5:abstr 364 [PubMed][Google Scholar]
  • 27. Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 2008; 7(12):1875-84; PMID:18981733; http://dx.doi.org/10.4161/cbt.7.12.7067 [] [[PubMed]
  • 28. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006; 5:14; PMID:16689993; http://dx.doi.org/10.1186/1477-3163-5-14 ] [
  • 29. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science 2006; 312(5782):1882-3; PMID:16809515; http://dx.doi.org/10.1126/science.1130481 [] [[PubMed]
  • 30. Xu Y, Fang F, Miriyala S, Crooks PA, Oberley TD, Chaiswing L, Noel T, Holley AK, Zhao Y, Kiningham KK, et al. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res 2013; 73(14):4406-17; PMID:23674500; http://dx.doi.org/10.1158/0008-5472.CAN-12-4297 ] [[Google Scholar]
  • 31. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7(2):97-110; PMID:15158766; http://dx.doi.org/10.1016/j.drup.2004.01.004 [] [[PubMed]
  • 32. Cho D, Signoretti S, Regan M, Mier JW, Atkins MB. The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 2007; 13(2 Pt 2):758s-63s; PMID:17255306; http://dx.doi.org/10.1158/1078-0432.CCR-06-1986 [] [[PubMed]
  • 33. Di Lorenzo G, Buonerba C, Biglietto M, Scognamiglio F, Chiurazzi B, Riccardi F, Carteni G. The therapy of kidney cancer with biomolecular drugs. Cancer Treat Rev 2010; 36 Suppl 3:S16-20; PMID:21129605; http://dx.doi.org/10.1016/S0305-7372(10)70015-3 [] [[PubMed]
  • 34. Hudes GR. Targeting mTOR in renal cell carcinoma. Cancer 2009; 115(10 Suppl):2313-20; PMID:19402072; http://dx.doi.org/10.1002/cncr.24239 [] [[PubMed]
  • 35. Husseinzadeh HD, Garcia JA. Therapeutic rationale for mTOR inhibition in advanced renal cell carcinoma. Curr Clin Pharmacol 2011; 6(3):214-21; PMID:21827395; http://dx.doi.org/10.2174/157488411797189433 [] [[PubMed]
  • 36. Morais C, Gobe G, Johnson DW, Healy H. The emerging role of nuclear factor kappa B in renal cell carcinoma. Int J Biochem Cell Biol 2011; 43(11):1537-49; PMID:21854869; http://dx.doi.org/10.1016/j.biocel.2011.08.003 [] [[PubMed]
  • 37. Oya M, Takayanagi A, Horiguchi A, Mizuno R, Ohtsubo M, Marumo K, Shimizu N, Murai M. Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 2003; 24(3):377-84; PMID:12663495; http://dx.doi.org/10.1093/carcin/24.3.377 [] [[PubMed]
  • 38. Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff JW. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer 2002; 99(1):53-7; PMID:11948491; http://dx.doi.org/10.1002/ijc.10303 [] [[PubMed]
  • 39. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol 2010; 221(2):125-38; PMID:20225241; http://dx.doi.org/10.1002/path.2689 [] [[PubMed]
  • 40. Kirsanov KI, Kotova E, Makhov P, Golovine K, Lesovaya EA, Kolenko VM, Yakubovskaya MG, Tulin AV. Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget 2014; 5(2):428-37; PMID:24504413
  • 41. Golovine K, Makhov P, Uzzo RG, Shaw T, Kunkle D, Kolenko VM. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin Cancer Res 2008; 14(17):5376-84; PMID:18765529; http://dx.doi.org/10.1158/1078-0432.CCR-08-0455 ] [
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.