Piperine inhibits lipopolysaccharide-induced maturation of bone-marrow-derived dendritic cells through inhibition of ERK and JNK activation.
Journal: 2013/April - Phytotherapy Research
ISSN: 1099-1573
Abstract:
Piperine, one of the main components of Piper longum Linn. and P. nigrum Linn., is a plant alkaloid with a long history of medicinal use. Piperine has been shown to modulate the immune response, but the mechanism underlying this modulation remains unknown. Here, we examined the effects of piperine on lipopolysaccharide (LPS)-induced inflammatory responses in bone-marrow-derived dendritic cells (BMDCs). Piperine significantly inhibited the expression of major histocompatibility complex class II, CD40 and CD86 in BMDCs in a dose-dependent manner. Furthermore, piperine treatment led to an increase in fluorescein-isothiocyanate-dextran uptake in LPS-treated dendritic cells and inhibited the production of tumour necrosis factor alpha and interleukin (IL)-12, but not IL-6. The inhibitory effects of piperine were mediated via suppression of extracellular signal-regulated kinases and c-Jun N-terminal kinases activation, but not p38 or nuclear factor-κB activation. These findings provide insight into the immunopharmacological role of piperine.
Relations:
Citations
(5)
Conditions
(1)
Chemicals
(9)
Organisms
(2)
Processes
(3)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.