Non-nutritive Sweeteners and Their Associations with Obesity and Type 2 Diabetes
Journal: 2020/June - Journal of Obesity
Abstract:
Evidence linking the excessive consumption of nutritive sweeteners (NS) to adverse metabolic health outcomes has led to an increase in consumption of non-nutritive sweeteners (NNS), particularly among the obese and individuals with diabetes. NNS are characterized by having zero-to-negligible caloric load, while also having a sweet taste. They are utilized as a replacement for traditional NS to reduce energy intake and to limit carbohydrate-related negative health outcomes. However, recent studies have suggested that NNS may actually contribute to the development or worsening of metabolic diseases, including metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease. Thus, it is imperative to understand the NNS efficacy and the relationship between NNS and metabolic diseases.
Keywords: Aspartame; Diabetes; Glucose; Obesity; Stevia; Sucralose.
Relations:
Content
References
(57)
Diseases
(3)
Drugs
(2)
Chemicals
(3)
Organisms
(1)
Processes
(1)
Similar articles
Articles by the same authors
Discussion board
J Obes Metab Syndr 29(2): 114-123

Non-nutritive Sweeteners and Their Associations with Obesity and Type 2 Diabetes

Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
Corresponding author Yunsuk Koh, https://orcid.org/0000-0001-9280-5786, Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97313, Waco, TX 76798, USA, Tel: +1-254-710-4002, Fax: +1-254-710-3527, E-mail: ude.rolyab@hok_kusnuy
Received 2019 Dec 19; Revised 2020 Feb 18; Accepted 2020 Apr 9.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Evidence linking the excessive consumption of nutritive sweeteners (NS) to adverse metabolic health outcomes has led to an increase in consumption of non-nutritive sweeteners (NNS), particularly among the obese and individuals with diabetes. NNS are characterized by having zero-to-negligible caloric load, while also having a sweet taste. They are utilized as a replacement for traditional NS to reduce energy intake and to limit carbohydrate-related negative health outcomes. However, recent studies have suggested that NNS may actually contribute to the development or worsening of metabolic diseases, including metabolic syndrome, obesity, type

2 diabetes, and cardiovascular disease. Thus, it is imperative to understand the NNS efficacy and the relationship between NNS and metabolic diseases.

Keywords: Stevia, Diabetes, Aspartame, Sucralose, Glucose, Obesity
Abstract

Footnotes

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Study concept and design: all authors; drafting of the manuscript: all authors; critical revision of the manuscript: YK; and study supervision: YK.

Footnotes

REFERENCES

REFERENCES

References

  • 1. Shwide-Slavin C, Swift C, Ross TNonnutritive sweeteners:where are we today? Diabetes Spectr. 2012;25:104–10. doi: 10.2337/diaspect.25.2.104.[PubMed][Google Scholar]
  • 2. Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, et al Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2012;35:1798–808. doi: 10.2337/dc12-9002.] [[Google Scholar]
  • 3. Sylvetsky AC, Rother KITrends in the consumption of lowcalorie sweeteners. Physiol Behav. 2016;164(Pt B):446–50. doi: 10.1016/j.physbeh.2016.03.030.] [[Google Scholar]
  • 4. Martyn D, Darch M, Roberts A, Lee HY, Yaqiong Tian T, Kaburagi N, et al Low-/no-calorie sweeteners: a review of global intakes. Nutrients. 2018;10:357. doi: 10.3390/nu10030357.] [[Google Scholar]
  • 5. Piernas C, Ng SW, Popkin BTrends in purchases and intake of foods and beverages containing caloric and low-calorie sweeteners over the last decade in the United States. Pediatr Obes. 2013;8:294–306. doi: 10.1111/j.2047-6310.2013.00153.x.] [[Google Scholar]
  • 6. Sylvetsky AC, Welsh JA, Brown RJ, Vos MBLow-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr. 2012;96:640–6. doi: 10.3945/ajcn.112.034751.] [[Google Scholar]
  • 7. Piernas C, Aveyard P, Jebb SARecent trends in weight loss attempts: repeated cross-sectional analyses from the health survey for England. Int J Obes (Lond) 2016;40:1754–9. doi: 10.1038/ijo.2016.141.] [[PubMed][Google Scholar]
  • 8. Miller G, Merlo C, Demissie Z, Sliwa S, Park STrends in beverage consumption among high school students: United States, 2007-2015. MMWR Morb Mortal Wkly Rep. 2017;66:112–6. doi: 10.15585/mmwr.mm6604a5.] [[Google Scholar]
  • 9. Seo MH, Lee WY, Kim SS, Kang JH, Kang JH, Kim KK, et al 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J Obes Metab Syndr. 2019;28:40–5. doi: 10.7570/jomes.2019.28.1.40.] [[Google Scholar]
  • 10. Cohen AM, Teitelbaum A, Balogh M, Groen JJEffect of interchanging bread and sucrose as main source of carbohydrate in a low fat diet on the glucose tolerance curve of healthy volunteer subjects. Am J Clin Nutr. 1966;19:59–62. doi: 10.1093/ajcn/19.1.59.] [[PubMed][Google Scholar]
  • 11. Malik VS, Schulze MB, Hu FBIntake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr. 2006;84:274–88. doi: 10.1093/ajcn/84.2.274.] [[Google Scholar]
  • 12. Dandona P, Aljada A, Bandyopadhyay AInflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7. doi: 10.1016/j.it.2003.10.013.] [[PubMed][Google Scholar]
  • 13. Kahn BB, Flier JSObesity and insulin resistance. J Clin Invest. 2000;106:473–81. doi: 10.1172/JCI10842.] [[Google Scholar]
  • 14. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States. Centers for Disease Control and Prevention; Atlanta (GA): 2014. [PubMed]
  • 15. American Diabetes AssociationDiagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81–90. doi: 10.2337/dc14-S081.] [[PubMed][Google Scholar]
  • 16. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, et al Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:293–301. doi: 10.1016/j.diabres.2010.01.026.] [[PubMed][Google Scholar]
  • 17. Miller PE, Perez VLow-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014;100:765–77. doi: 10.3945/ajcn.113.082826.] [[Google Scholar]
  • 18. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, et al Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 2017;189:E929–39. doi: 10.1503/cmaj.161390.] [[Google Scholar]
  • 19. Toews I, Küllenberg de Gaudry D, Lohner S, Sommer H, Meerpohl JJAssociation between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364:k4718. doi: 10.1136/bmj.k4718.] [[Google Scholar]
  • 20. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, et al Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middleaged adults in the community. Circulation. 2007;116:480–8. doi: 10.1161/CIRCULATIONAHA.107.689935.] [[PubMed][Google Scholar]
  • 21. Lutsey PL, Steffen LM, Stevens JDietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation. 2008;117:754–61. doi: 10.1161/CIRCULATIONAHA.107.716159.] [[PubMed][Google Scholar]
  • 22. Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A, Ness AR, et al Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond) 2016;40:381–94. doi: 10.1038/ijo.2015.177.] [[Google Scholar]
  • 23. Swithers SE, Sample CH, Davidson TLAdverse effects of high-intensity sweeteners on energy intake and weight control in male and obesity-prone female rats. Behav Neurosci. 2013;127:262–74. doi: 10.1037/a0031717.] [[Google Scholar]
  • 24. Swithers SE, Davidson TLA role for sweet taste: calorie predictive relations in energy regulation by rats. Behav Neurosci. 2008;122:161–73. doi: 10.1037/0735-7044.122.1.161.] [[PubMed][Google Scholar]
  • 25. Wiebe N, Padwal R, Field C, Marks S, Jacobs R, Tonelli MA systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med. 2011;9:123. doi: 10.1186/1741-7015-9-123.] [[Google Scholar]
  • 26. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr., Jr Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) Diabetes Care. 2009;32:688–94. doi: 10.2337/dc08-1799.] [
  • 27. Imamura F, O'Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. 2016;50:496–504. doi: 10.1136/bjsports-2016-h3576rep.] [[Google Scholar]
  • 28. Onakpoya IJ, Heneghan CJEffect of the natural sweetener, steviol glycoside, on cardiovascular risk factors: a systematic review and meta-analysis of randomised clinical trials. Eur J Prev Cardiol. 2015;22:1575–87. doi: 10.1177/2047487314560663.] [[PubMed][Google Scholar]
  • 29. Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, et al Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55:37–43. doi: 10.1016/j.appet.2010.03.009.] [[Google Scholar]
  • 30. Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein SSucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36:2530–5. doi: 10.2337/dc12-2221.] [[Google Scholar]
  • 31. Swithers SE, Laboy AF, Clark K, Cooper S, Davidson TLExperience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav Brain Res. 2012;233:1–14. doi: 10.1016/j.bbr.2012.04.024.] [[Google Scholar]
  • 32. Brown AW, Bohan Brown MM, Onken KL, Beitz DCShortterm consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr Res. 2011;31:882–8. doi: 10.1016/j.nutres.2011.10.004.] [[PubMed][Google Scholar]
  • 33. Okuno G, Kawakami F, Tako H, Kashihara T, Shibamoto S, Yamazaki T, et al Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics. Diabetes Res Clin Pract. 1986;2:23–7. doi: 10.1016/S0168-8227(86)80025-0.] [[PubMed][Google Scholar]
  • 34. Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, et al Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296:G735–9. doi: 10.1152/ajpgi.90708.2008.] [[Google Scholar]
  • 35. Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, et al Genetics of taste receptors. Curr Pharm Des. 2014;20:2669–83. doi: 10.2174/13816128113199990566.] [[Google Scholar]
  • 36. Tonosaki K, Funakoshi MCross-adapted sugar responses in the mouse taste cell. Comp Biochem Physiol A Comp Physiol. 1989;92:181–3. doi: 10.1016/0300-9629(89)90149-7.] [[PubMed][Google Scholar]
  • 37. Johnson RJ, Sánchez-Lozada LG, Andrews P, Lanaspa MAPerspective: a historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv Nutr. 2017;8:412–22. doi: 10.3945/an.116.014654.] [[Google Scholar]
  • 38. Feijó FM, Ballard CR, Foletto KC, Batista BA, Neves AM, Ribeiro MF, et al Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similar total caloric intake levels. Appetite. 2013;60:203–7. doi: 10.1016/j.appet.2012.10.009.] [[PubMed][Google Scholar]
  • 39. Antenucci RG, Hayes JENonnutritive sweeteners are not supernormal stimuli. Int J Obes (Lond) 2015;39:254–9. doi: 10.1038/ijo.2014.109.] [[Google Scholar]
  • 40. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23. doi: 10.1073/pnas.0407076101.] [[Google Scholar]
  • 41. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JIObesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5. doi: 10.1073/pnas.0504978102.] [[Google Scholar]
  • 42. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JIAn obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. doi: 10.1038/nature05414.] [[PubMed][Google Scholar]
  • 43. Kulecka M, Paziewska A, Zeber-Lubecka N, Ambrozkiewicz F, Kopczynski M, Kuklinska U, et al Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice. Nutr Metab (Lond) 2016;13:57. doi: 10.1186/s12986-016-0116-8.] [[Google Scholar]
  • 44. Anderson RL, Kirkland JJThe effect of sodium saccharin in the diet on caecal microflora. Food Cosmet Toxicol. 1980;18:353–5. doi: 10.1016/0015-6264(80)90188-1.] [[PubMed][Google Scholar]
  • 45. Daly K, Darby AC, Hall N, Nau A, Bravo D, Shirazi-Beechey SPDietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr. 2014;111(Suppl 1):S30–5. doi: 10.1017/S0007114513002274.] [[PubMed][Google Scholar]
  • 46. Sterk A, Schlegel P, Mul AJ, Ubbink-Blanksma M, Bruininx EMEffects of sweeteners on individual feed intake characteristics and performance in group-housed weanling pigs. J Anim Sci. 2008;86:2990–7. doi: 10.2527/jas.2007-0591.] [[PubMed][Google Scholar]
  • 47. Siurana A, Wall EH, Rodrguez M, Castillejos L, Ferret A, Calsamiglia S. The effect of dietary supplementation of artificial sweetener on performance of milk-fed calves. Proceedings of 2014 ADSA-ASAS-CSAS Joint Annual Meeting; 2014 Jul 22; Kansas City, MI, USA. 2014. [PubMed]
  • 48. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SSSplenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A. 2008;71:1415–29. doi: 10.1080/15287390802328630.] [[PubMed][Google Scholar]
  • 49. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39. doi: 10.1002/art.38892.] [[Google Scholar]
  • 50. Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the dietinduced obese rat. PLoS One. 2014;9:e109841. doi: 10.1371/journal.pone.0109841.] [[Google Scholar]
  • 51. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6. doi: 10.1038/nature13793.] [[PubMed][Google Scholar]
  • 52. Choudhary AK, Pretorius ERevisiting the safety of aspartame. Nutr Rev. 2017;75:718–30. doi: 10.1093/nutrit/nux035.] [[PubMed][Google Scholar]
  • 53. Peters JC, Beck J, Cardel M, Wyatt HR, Foster GD, Pan Z, et al The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: a randomized clinical trial. Obesity (Silver Spring) 2016;24:297–304. doi: 10.1002/oby.21327.] [[Google Scholar]
  • 54. Blackburn GL, Kanders BS, Lavin PT, Keller SD, Whatley JThe effect of aspartame as part of a multidisciplinary weightcontrol program on short- and long-term control of body weight. Am J Clin Nutr. 1997;65:409–18. doi: 10.1093/ajcn/65.2.409.] [[PubMed][Google Scholar]
  • 55. Beauchamp GKWhy do we like sweet taste: a bitter tale? Physiol Behav. 2016;164(Pt B):432–7. doi: 10.1016/j.physbeh.2016.05.007.] [[Google Scholar]
  • 56. Appuhamy JA, Kebreab E, Simon M, Yada R, Milligan LP, France JEffects of diet and exercise interventions on diabetes risk factors in adults without diabetes: meta-analyses of controlled trials. Diabetol Metab Syndr. 2014;6:127. doi: 10.1186/1758-5996-6-127.] [[Google Scholar]
  • 57. You T, Arsenis NC, Disanzo BL, Lamonte MJEffects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 2013;43:243–56. doi: 10.1007/s40279-013-0023-3.] [[PubMed][Google Scholar]
  • 58. Siegler J, Howell K, Vince R, Bray J, Towlson C, Peart D, et al Aspartame in conjunction with carbohydrate reduces insulin levels during endurance exercise. J Int Soc Sports Nutr. 2012;9:36. doi: 10.1186/1550-2783-9-36.] [[Google Scholar]
  • 59. Sylvetsky AC, Gardner AL, Bauman V, Blau JE, Garraffo HM, Walter PJ, et al Nonnutritive sweeteners in breast milk. J Toxicol Environ Health A. 2015;78:1029–32. doi: 10.1080/15287394.2015.1053646.] [[Google Scholar]
  • 60. Reid AE, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, et al Early exposure to nonnutritive sweeteners and long-term metabolic health: a systematic review. Pediatrics. 2016;137:e20153603. doi: 10.1542/peds.2015-3603.] [[PubMed][Google Scholar]
  • 61. Hackett M, Bland A, Ma X, Yokose K Chemical economics handbook report: high intensity sweeteners. SRI International; Menlo Park (CA): 2014. [PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.