DOUBLE STRANDED RNA BINDING PROTEIN 2 PARTICIPATES IN ANTIVIRAL DEFENSE.
Journal: 2020/March - Journal of Virology
ISSN: 1098-5514
Abstract:
Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference pathway (RNAi) and innate pattern-triggered immune responses (PTI). While details of the former process have been well established in recent years, the latter ones are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross-talk between the different antiviral mechanisms. Here, we demonstrate that double-stranded RNA binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX) elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RDR6-dependent dsRNAs play an important role in the triggering of PVX induced systemic necrosis. Based on our data a model is formulated whereby a competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.IMPORTANCE Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, non-infected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here we provide evidence that the dsRNA-binding protein 2 of Nicotiana benthamaiana plays an important role in virus induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors, but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.
Relations:
Citations
(1)
Diseases
(1)
Conditions
(1)
Chemicals
(3)
Genes
(2)
Organisms
(3)
Processes
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.