Anti-obesity action of Salix matsudana leaves (Part 2). Isolation of anti-obesity effectors from polyphenol fractions of Salix matsudana.
Journal: 2004/February - Phytotherapy Research
ISSN: 0951-418X
Abstract:
Previously, it was reported that polyphenol fractions prepared from the leaves of Salix matsudana reduced the elevation of the rat plasma triacylglycerol level at 3 and 4 h after oral administration of a lipid emulsion containing corn oil, at a dose of 570 mg/kg. Moreover, body weights at 2-9 weeks and the fi nal parametrial adipose tissue weights were significantly lower in mice fed the high-fat diet with 5% polyphenol fractions of S. matsudana leaves than in those fed the high-fat diet alone. The polyphenol fractions of S. matsudana leaves also significantly reduced the hepatic total cholesterol content, which was elevated in mice fed the high-fat diet alone. In addition, the polyphenol fractions of S. matsudana leaves inhibited palmitic acid uptake into brush border membrane vesicles prepared from rat jejunum and alpha-amylase activity, and their fractions enhanced norepinephrine-induced lipolysis in fat cells. To clarify the active substances inhibiting the palmitic acid uptake into small intestinal brush border membrane, the alpha-amylase activity or enhancing the norepinephrine-induced lipolyis in fat cells, the isolation of the active substances from polyphenol fraction was attempted using the above three assay systems. Compounds 1, 2 and 3 were isolated from the polyphenol fractions and identified as apigenin-7-O-d-glucoside, luteolin-7-O-d-glucoside and chrysoeriol-7-O-d-glucoside, respectively. Among three flavonoids, apigenin-7-O-d-glucoside inhibited alpha-amylase activity, and luteolin-7-O-d-glucoside and chrysoeriol-7-O-d-glucoside inhibited palmitic acid uptake into small intestinal brush border membrane. Furthermore, three flavonoid glucosides enhanced norepinephrine-induced lipolysis in fat cells.
Relations:
Citations
(6)
Conditions
(1)
Drugs
(3)
Chemicals
(7)
Organisms
(4)
Processes
(3)
Anatomy
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.