Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes.
Journal: 2017/January - BMC Complementary and Alternative Medicine
ISSN: 1472-6882
Abstract:
BACKGROUND
Infectious diseases due to multidrug-resistant bacteria are one of the causes of treatment failures contributing to an increase in mortality and/or morbidity. In this study, we evaluated the antibacterial potential of different parts of six medicinal plants namely Alstonia boonei, Ageratum conyzoides, Croton macrostachys, Cassia obtusifolia, Catharanthus roseus and Paullinia pinnata against a panel of 36 multi-drug resistant (MDR) Gram-negative and Gram-positive bacteria.
METHODS
Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) of the methanol extracts from different parts of the plants were determined using broth microdilution method; standard phytochemical methods were used for phytochemical screening.
RESULTS
Several phytochemical classes such as polyphenols, sterols, triterpenes, alkaloids, flavonoids and saponins were identified in the plant extracts. MIC values obtained ranged from 64 to 1024 μg/mL. Leaves extract of Catharanthus roseus (86.11 %), Croton macrostachys (83.33 %) and Paullinia pinnata (80.55 %) displayed the best antibacterial spectra. The lowest MIC value of 64 μg/mL was obtained with the Paullinia pinnata stems extract and Cassia obtusifolia extract against the strain of Staphylococcus aureus MRSA8. Results also showed that the tested samples generally displayed bacteriostatic effects with MBC values obtained in only 3.35 % of the cases where plant extracts were active.
CONCLUSIONS
The results obtained at the end of this study demonstrate for the first time the antibacterial activity of the studied medicinal plants against MDR bacteria. The tested plants could be a reservoir of molecules to fight against MDR bacterial infections.
Relations:
Content
Citations
(7)
References
(45)
Drugs
(1)
Chemicals
(2)
Organisms
(3)
Processes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
BMC Complementary and Alternative Medicine. Dec/31/2015; 16
Published online Oct/9/2016

Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes

Abstract

Background

Infectious diseases due to multidrug-resistant bacteria are one of the causes of treatment failures contributing to an increase in mortality and/or morbidity. In this study, we evaluated the antibacterial potential of different parts of six medicinal plants namely Alstonia boonei, Ageratum conyzoides, Croton macrostachys, Cassia obtusifolia, Catharanthus roseus and Paullinia pinnata against a panel of 36 multi-drug resistant (MDR) Gram-negative and Gram-positive bacteria.

Methods

Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) of the methanol extracts from different parts of the plants were determined using broth microdilution method; standard phytochemical methods were used for phytochemical screening.

Results

Several phytochemical classes such as polyphenols, sterols, triterpenes, alkaloids, flavonoids and saponins were identified in the plant extracts. MIC values obtained ranged from 64 to 1024 μg/mL. Leaves extract of Catharanthus roseus (86.11 %), Croton macrostachys (83.33 %) and Paullinia pinnata (80.55 %) displayed the best antibacterial spectra. The lowest MIC value of 64 μg/mL was obtained with the Paullinia pinnata stems extract and Cassia obtusifolia extract against the strain of Staphylococcus aureus MRSA8. Results also showed that the tested samples generally displayed bacteriostatic effects with MBC values obtained in only 3.35 % of the cases where plant extracts were active.

Conclusion

The results obtained at the end of this study demonstrate for the first time the antibacterial activity of the studied medicinal plants against MDR bacteria. The tested plants could be a reservoir of molecules to fight against MDR bacterial infections.

Background

Infectious diseases caused by multidrug-resistant bacteria are growing steadily and are associated with a significant attributable mortality [1, 2]. The emergence of multi-drug resistant (MDR) phenotypes was first linked to nosocomial infections; but nowadays they are increasingly responsible for community infections and all pathogenic microorganisms are concerned. In Gram-negative bacteria, one of the mechanisms of resistance is the lowering of intracellular amount of antibacterial substances due to the presence of the resistance nodulation cell division (RND)-type efflux pumps. This phenomenon gives possibility to bacteria developing resistance to a wide range of antibiotics, as well as several biocides [3, 4]. Gram-positive bacteria are also a major cause of hospitalization; infections due to Staphylococcus aureus resistant to methicillin (MRSA) are a major health problem both in hospitals and community environments [5]. MRSA is responsible for 80461 severe infections and causing the death of 11,285 patients annually in the United States [6]. One of the possible ways to overcome this phenomenon of multi-resistance is the continual search for new antibacterial molecules active vis-à-vis of MDR bacteria. With regard to the broad diversity of their secondary metabolites, medicinal plants represent undeniable sources of antibacterial agents. According to WHO [7], 80 % of people in Africa have used medicinal plants for their health care; it is also estimated that among medicines sold worldwide, 30 % contain compounds derived from medicinal plants [8]. Several African medicinal plants previously investigated for biological potential showed good antibacterial activities. Some of them include Treculia obovoidea [9], Albizia adianthifolia Laportea ovalifolia [10], Alchornea cordifolia, Pennisetum purpureum [11]. In our continuous search of phytochemicals to combat MDR bacterial infections, we designed the present study to evaluate the antimicrobial potential of six Cameroonian medicinal plants namely Alstonia boonei, Catharanthus roseus, Ageratum conyzoides, Croton macrostachys, Cassia obtusifolia, and Paullinia pinnata vis-à-vis MDR Gram-negative and Gram-positive phenotypes.

Methods

Plant materials and extraction

Various parts of plant (Table 1) were collected from different regions in Cameroon during the month of February 2014. These include Alstonia boonei (leaves and bark), Catharanthus roseus (leaves and stem), Ageratum conyzoides (whole plant), Croton macrostachys (leaves), Cassia obtusifolia (whole plant), and Paullinia pinnata (leaves and stem). After drying, each part was powdered and soaked in methanol for 48 h at room temperature, and then filtered using Whatman filter paper N°1. The filtrate obtain were concentrated at 50 °C under reduce pressure in a vacuum to obtain each plant extract.

Table 1
Information on plant used in the present study
Plant family/Plant sample - Herbarium voucher numberTraditional usePart used in this studyPotential active compounds characterizedPreviously screened activity
APOCYNACEAE/Alstonia boonei De Wild – 43368/HNCFever, painful micturition, insomnia, chronic diarrhea, rheumatic pains, anti-venom (snake bites), malaria, diabetes, helminths, arthritis [28, 29].Leaves, barkEchitamine, echitamidine, Voacangine, akuammidine, N- α-formylechitamidine, N- α-formyl-12-methoxyechitamidine [29].Antimalarial, antioxidant, analgesic, anti-inflammatory, antipyretic [3032].
APOCYNACEAE/Catharanthus roseus L. – 5689/HNC.Bleeding arresting, diabetes, fever, rheumatism, cancer [20, 33].Leaves, stemVincristine, vinblastine, benzoic acid, p-hydroxybenzoic acid, salicylic acid, 2,3-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, gallic acid, vanillic acid, chlorogenic acid, kaemferol trisaccharides, Quercetin trisaccharides, Syringetin glycosides [20, 34].Wound-healing, antimicrobial, hypoglycemic, antioxidant [18, 20, 33].
ASTERACEAE/Ageratum conyzoïdes Linn. – 19050/SFR-CamPurgative, fever, ulcers, wound, mental, infectious diseases, headaches, anti-inflammatory, diarrhea [35, 36].Whole plantβ-caryophyllene, precocene I, friedelin, Lycopsamine, echinatine,β-sitosterol, stigmasterol, 5-methoxynobiletin, linderoflavone B, eupalestin, sabinene, α and β pinene, β-phellandrene, 1,8-cineole and limonene, ocimene, eugenol [35].Antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antipyretic, insecticidal, antioxidant, antiplasmodial, cytotoxic [35, 37, 38].
EUPHORBIACEAE/Croton macrostachys Hochst. – 40501/HNCMalaria, antidiabetic, purgative mastitis, wounds, gastrointestinal Complications [3941].LeavesNeoclerodan-5,10-en-19,6β;20,12-diolide; 3α,19-Dihydroxytrachylobane; 3α,18,19-Trihydroxytrachylobane, lupeol, lupenone, betulinic acid, 28-O-acetylbetulin, betulin, lupeol acetate, zeorin, benzoic acid, methyl gallate, methyl 2,4-dihydroxy-3,6-dimethylbenzoate, lichexanthone, β-sitosterol, and β-sitosterol palmitate, stigmasterol, botulin, crotepoxide [42, 43].Antimicrobial, antimalarial, cytotoxic [38, 39, 41].
FABACEAE/Cassia obtusifolia L. – 39847/HNCLaxative, eye infections, diarrhea, urinary tract infections, gingivitis, fever, cough [25].Whole plantaloe-emodin, 1-methylaurantio-obtusin-2-O-β-D-glucopyranoside, emodin, 1,2- dihydroxyanthraquinone, obtusin, chrysoobtusin, aurantioobtusin, gluco-obtusifolin, glucoaurantioobtusin, gluco-chryso-obtusin, 1-desmethylaurantio-obtusin, 1-desmethylaurantio-obtusin-2-O-β- D-glucopyranoside, 1-desmethylchryso-obtusin, 1-desmethyl-obtusin, aurantio-obtusin-6-O-β-D-glucopyranoside, alaternin-1-O-β-D-glucopyranoside, chrysoobtusin-2-O-β-D-glucopyranoside physicon-8-O-β-D-glucoside, obtusifolin, O-methyl-chrysophanol, emodin-1-O-β-gentio-bioside, chrysophanol-1-O-β-gentiobioside, physcion-8-O-β-gentiobioside, physcion-8-O-β-glucoside, chrysophanol-1-O-β-D-glucopyranosyl-(13)-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside, chrysophanic acid, physcion, questin, 1,3-dihydroxy-8-methylanthraquinone, chrysophanol- 10,10′-bianthrone, torosachrysone [44].Antibacterial, antifungal, mosquito larvicidal activity, platelet antiaggregatory, neuroprotective [25, 4547].
SAPINDACEAE/Paullinia pinnata L. – 10702/SRF-CamMalaria, erectile dysfunction [24].Leaves, stemPaullinoside A, paullinomides A and B, β-amyrin, 13β,17β-dihydroxy-28-norolean-12-ene, β-sitosterol glucopyranoside, 2-O-methyl-L-chiro-inositol, L-quebrachitol, β-sitosterol, friedelin, daucosterol, aridanin, lotoidoside [24, 48].Antiparasitic, antimicrobial, cytotoxic [24, 38, 49].

HNC Cameroon National Herbarium, SRF-Cam Société’ des Réserves Forestières du Cameroun

Preliminary phytochemical screenings

The presence of alkaloids, triterpenes, sterols, flavonoids, polyphenols and saponins were screened according to the common phytochemical methods described by Harborne [12].

Chemicals

Chloramphenicol and ciprofloxacin (Sigma–Aldrich, St. Quentin Fallavier, France) were used as reference antibiotics meanwhile p-Iodonitrotetrazolium chloride (INT) was used as microbial growth indicator.

Bacterial strains and culture media

The studied microorganisms included ATCC (American Type Culture Collection) and MDR clinical strains of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Providencia stuartii, Klebsiella pneumoniae and Enterobacter cloacae) and Gram-positive bacteria (Staphyloccocus aureus). Their bacterial features are summarized in Table 2; they were maintained at 4 °C on McConkey agar and Mannitol Salt Agar (MSA) for Gram negative and Gram positive bacteria respectively, and sub-cultured on Mueller Hinton Agar (MHA) for 24 h before any test. Mueller Hinton Broth (MHB) was used for MIC and MBC determinations.

Table 2
Bacterial strains used in this study and their features
Escherichia coliEnterobacter aerogenesEnterobacter cloacaeKlebsiella pneumoniaeProvidencia stuartiiPseudemonas aeruginosa
StrainsCharacteristicsReferences
ATCC10536Reference strain
AG100Wild-type E. coli K-12[50]
AG100AAG100 ΔacrAB::KANR
AG100ATETΔacrAB mutant AG100, with over-expressing acrF gene ; TETR[5052]
AG102ΔacrAB mutant AG100, owing acrF gene markedly over-expressed; TETR[53, 54]
MC4100Wild type E. coli[55]
W3110Wild type E. coli[55, 56]
ATCC13048Reference strain
CM64CHLR resistant variant obtained from ATCC13048 over-expressing the AcrAB pump[57]
EA3Clinical MDR isolate; CHLR, NORR, OFXR, SPXR, MOXR, CFTR, ATMR, FEPR[58, 59]
EA27Clinical MDR isolate exhibiting energy-dependent norfloxacin and chloramphenicol efflux with KANR AMPR NALR STRR TETR[58, 59]
EA289KAN sensitive derivative of EA27[60]
EA294EA289 acrA::KANR[60]
EA298EA 289 tolC::KANR[60]
ECCI69Clinical MDR isolates, CHLR[61]
BM67Clinical MDR isolates, CHLR[61]
BM47Clinical MDR isolates, CHLR[61]
ATCC12296Reference strain
KP55Clinical MDR isolate, TETR, AMPR, ATMR, CEFR[62]
KP63Clinical MDR isolate, TETR, CHLR, AMPR, ATMR[62]
K24AcrAB-TolC, Laboratory collection of UNR-MD1, University of Marseille, France[61]
K2AcrAB-TolC, Laboratory collection of UNR-MD1, University of Marseille, France[61]
NEA16Clinical MDR isolate, AcrAB-TolC[63]
ATCC29916Clinical MDR isolate, AcrAB-TolC
PS2636Clinical MDR isolate, AcrAB-TolC
PS299645Clinical MDR isolate, AcrAB-TolC
PA 01Reference strain
PA 124MDR clinical isolate[64]
S. aureus
ATCC 25923Reference strain
MRSA 3Clinical MDR isolate OFXR, KANR, TETR, ERMR[65]
MRSA 4Clinical MDR isolate OFXR, KANR, CHLR, CIPR
MRSA 6Clinical MDR isolate OFXR, FLXR, KANR, TETR, CIPR, IM/CSR
MRSA 8Clinical MDR isolate OFXR, FLXR, KANR, ERMR, CIPR, IM/CSR
MRSA 11Clinical MDR isolate OFXR, KANR, ERMR, CIPR, IM/CSR
MRSA 12Clinical MDR isolate OFXR, FLXR, KANR, ERMR, IM/CSR

AMPR, ATMR, CEFR, CFTR, CHLR, CIPR, ERMR, FEPR, FLXR, IM/CSR, KANR, MOXR, OFXR, STRR, TETR, Resistance to ampicillin, aztreonam, cephalothin, cefadroxil, chloramphenicol, Ciprofloxacin, Erythromycin, cefepime, Flomoxef, Imipenem/Cilastatin sodium, kanamycin, moxalactam, streptomycin, and tetracycline; MDR multidrug resistant

INT colorimetric assay for MIC and MBC determinations

Minimal inhibitory concentrations (MIC) of different plant extracts were determined using broth microdilution method described by Kuete et al. [13] with some modifications [9]. Briefly, plant extracts, chloramphenicol and ciprofloxacin were dissolved in dimethylsufoxide (DMSO)-MHB (10:90) and 100 μL each solution was added to a 96 wells microplate containing MHB, then serially diluted two-fold, followed by adding of 100 μL of inoculum prepared in MHB. The microplate was sealed and incubated for 18 h at 37 °C. The final concentration of inoculum was 1.5 ×106 CFU/mL and less than 2.5 % for DMSO in each well; Wells containing DMSO 2.5 % and inoculums were used as negative control whereas chloramphenicol and ciprofloxacin consist of positive control. After 18 h incubation, 40 μL of INT (0.2 mg/mL) was added to each well and re-incubated for 30 min. MIC was defined as the lowest concentration of plant extract that inhibited bacterial growth.

The determination of MBC was made by introducing 150 μL of MHB in each well of 96 well plate. Then 50 μL of the well contents which did not show any growth after incubation during MIC assays was introduced in the aforesaid plate accordingly, and incubated at 37 °C for 48 h. The MBC was defined as the lowest concentration of plant extract, which did not produce a color change after addition of INT as described previously.

Results

Phytochemical composition

The results of qualitative analysis (Table 3) showed that plant extracts contain various phytochemical classes of secondary metabolites. Polyphenols, triterpenes and saponins were present in all plant extracts except those from Cassia obtusifolia, Catharanthus roseus leaves and stem respectively.

Table 3
Extraction yields and phytochemical composition of the plant extracts
Plant extract (used part)Extraction yield (%)Phytochemicals groups
AlkaloidsTriterpenesSterolsFlavonoidsPolyphenolsSaponins
A. boonei (leaves)15.8 %--+-++
A. boonei (bark)9.65 %++++++
A. conyzoïdes (whole plant)8.52 %-++--+
C. macrostachys (Leaves)12.72 %-++-++
C. obtusifolia (whole plant)7.11 %++++++
C. roseus (leaves)6.89 %+-++++
C. roseus (stem)4.23 %+++++-
P. pinnata (leaves)10.84 %-++-++
P. pinnata (stem)5.47 %-++-++
+: presence; −: absence

In vitro antibacterial effect of plant extract

The methanol extracts from different parts of plants were tested on 36 bacterial strains including 7 Gram-positive and 29 Gram-negative bacterial strains. As shown in Table 4, extracts from leaves of Alstonia bonnei, Paullinia pinnata and Catharanthus roseus displayed wide spectra of activity in comparison to those from bark and stems of the same plants. The various plant extracts (when they were active) had MIC between 64 and 1024 μg/mL. Leaves of Catharanthus roseus showed the best spectrum of activity, inhibiting the growth of 86.11 % (31/36) of the bacteria (24/29 Gram-negative bacteria and 7/7 Gram-positive bacteria). The leaves extract of Croton macrostachys also had an interesting activity (30/36; 83.33 %), followed by extract of the leaves of P. pinnata (29/36; 80.55 %) and the whole plant extract of A. conyzoides (25/36; 69.44 %). The lowest MIC value of 64 μg/mL was obtained with the Paullinia pinnata stems extract and Cassia obtusifolia extract against the strain of Staphylococcus aureus MRSA8. In general, analysis of results shows that MBCs were obtained in 3.35 % (7/209) of cases where plant extracts were active.

Table 4
MIC and MBC (in bracket) of plant extracts and reference drugs
Escherichia coliPseudomonas aeruginosaEnterobacter aerogenesProvidencia stuartiiKlebsiella pneumoniaeEnterobacter cloacae
A. conyzoïdes (whole plant)A. booneiC. obtusifolia (whole plant)C. roseusC. macrostachys (leaves)P. pinnataReference drugs
LeavesBarkLeavesStemLeaves(Stem)Chloramphenicol
ATCC8739-512 (−)--512 (−)-512 (−)1024 (−)-2 (128)
ATCC10536256 (−)---512 (−)1024 (−)256 (−)128 (−)-<2 (64)
AG1001024 (−)--256 (1024)1024 (−)-1024 (−)256 (−)128 (−)8 (128)
AG100A1024 (−)--512 (−)128 (−)256 (−)-256 (−)256 (−)<2 (128)
AG100ATET1024 (−)512 (−)1024 (−)-1024 (−)---512 (−)32 (−)
AG102512 (−)512 (−)1024 (−)---1024 (−)-256 (−)64 (−)
MC4100----512 (−)512 (−)256 (−)256 (−)1024 (−)16 (−)
W311O1024 (−)-128 (−)-512 (−)-256 (−)1024 (−)-2 (−)
PA 01---256 (−)512 (−)256 (−)256 (−)256 (−)1024 (−)32 (−)
PA 124---------128 (−)
ATCC130481024 (−)512 (−)-512 (−)--128 (−)--4 (32)
EA-CM64256 (−)--512 (−)1024 (−)-256 (−)512 (−)1024 (−)256 (−)
EA3----256 (−)1024 (−)128 (−)--256 (−)
EA27256 (−)512 (−)512 (−)512 (1024)512 (−)1024 (−)512 (−)512 (−)-32 (−)
EA289512 (−)1024 (−)1024 (−)256 (−)512 (−)1024 (−)512 (−)512 (−)512 (−)64 (−)
EA2981024 (−)-1024 (−)512 (−)1024 (−)1024 (−)128 (−)512 (−)512 (−)128
NEA161024 (−)512 (−)1024 (−)10241024 (−)-1024 (−)1024 (−)1024 (−)32 (256)
ATCC29916512 (−)512 (−)----256 (−)1024 (−)-16 (256)
PS2636256 (−)----256 (−)256 (−)256 (−)-16 (256)
PS2996451024 (−)512 (−)--256 (−)512 (−)512 (−)512 (−)-64 (−)
ATCC11296512 (−)512 (−)1024 (−)1024 (−)1024 (−)1024 (−)512 (−)1024 (−)-8 (256)
KP55512 (−)512 (−)-256 (−)512 (−)-256 (−)1024 (−)256 (−)32 (256)
KP631024 (−)1024 (−)-1024 (−)512 (−)--1024 (−)1024 (−)32 (−)
K241024 (−)512 (−)1024 (−)1024 (−)1024 (−)-512 (−)512 (−)-64 (256)
K21024 (−)256 (−)-1024 (−)512 (−)512 (−)---8 (256)
ECCI69-1024 (−)1024 (−)1024 (−)1024 (−)-1024 (−)512 (−)1024 (−)-
BM47----1024 (−)-512 (−)1024 (−)1024 (−)256 (−)
BM67512 (−)512 (−)1024 (−)512 (−)256 (−)-256 (−)1024 (−)--
BM941024 (−)512 (−)1024 (−)512 (−)512 (−)-512 (−)1024 (−)-128 (−)
Staphyloccocus aureusCiprofloxacin
ATCC25923512 (−)256 (−)-256 (1024)512 (−)1024 (−)256 (−)256 (−)128 (1024)2 (8)
MRSA 3----1024 (−)----32 (128)
MRSA 4256 (−)256 (−)-128 (1024)512 (−)-256 (−)256 (−)128 (512)64 (128)
MRSA 6-128 (−)-256 (−)1024 (−)512 (−)512 (−)256 (−)256 (−)64 (128)
MRSA 8-128 (−)-64 (512)128 (−)1024 (−)512 (−)256 (−)64 (512)16 (64)
MRSA 111024 (−)--512 (−)1024 (−)1024 (−)1024 (−)512 (−)512 (−)128 (256)
MRSA 12-128 (−)-256 (−)1024 (−)1024 (−)512 (−)256 (−)256 (−)32 (32)
(−): MIC or MBC not detected up to 1024 μg/mL for plant extracts and 256 μg/mL for reference drugs

Discussion

Several classes of secondary metabolites such as alkaloids, triterpenes, sterols, flavonoids, polyphenols and saponins have been reported to have antibacterial properties [1315]. Their presence in the studied plant extracts could explain the antibacterial effects of the tested samples. The need to find new molecules from medicinal plants with effective mechanisms of action against the multidrug-resistant phenotype is a necessity nowadays. All plants used in traditional medicine which have MIC values less than 8 mg/mL are considered active [16]. A plant extract has significant antibacterial activity if MIC is ˂100 μg/mL, moderate if its MIC is between 100 and 625 μg/mL and low when MIC is above 625 μg/mL [17]. Based on the above criteria, it can be deduced that all tested plants had antibacterial activity as MIC values below 8 mg/mL were obtained with each extract on at least one bacterial strain. MIC values above 625 μg/mL were obtained with extract from A. boonei bark against 2/36 (5.5 %) tested bacteria as well as with C. roseus stem extract against 6/36 (16.7 %) microorganisms tested, indicating that they rather displayed low antibacterial effects. Nonetheless, the activity obtained with the Paullinia pinnata stems extract and Cassia obtusifolia extract against the strain of Staphylococcus aureus MRSA8 (MIC value of 64 μg/mL) could be considered important. Moderate activity was obtained in many cases. In fact, MIC values ranged from 128 to 512 μg/mL were obtained with extract from A. conyzoides (whole plant) against 12/36 (33.3 %) tested bacteria, A. boonei leaves against 19/36 (52.8 %), C. obtusifolia (whole plant) against 17/36 (47.2 %), C. roseus leaves against 18/36 (50 %), C. macrostachys (leaves) against 25/36 (69.4 %), and P. pinnata stem and leaves against 13/36 (36.1 %) and 19/36 (52.8 %) respectively.

Though the antibacterial activities of some of the tested plants have already been reported, their effects against MDR phenotypes are being documented for the first time. The extract from the leaves of C. roseus had a broad antibacterial activity (31/36; 86.11 %); Nayak and Pereira [18] and Kamaraj et al. [19] reported the antibacterial activity of this plant extract on some sensitive bacteria. Several alkaloids were isolated from this plant [20, 21] and these compounds could also be responsible for the antibacterial activity of this plant [22]. MIC values obtained with extract of leaves of C. macrostachys are between 128 and 1024 μg/mL; Antibacterial compounds previously isolated from this plant include the triterpenoid, lupeol [23]. The extract of P. pinnata possessed a good activity (MIC of 64 μg/mL) against S. aureus MRSA8 while the extract from the leaves was active against 80.55 % (29/36) of the studied microorganisms. Lunga et al. [24] demonstrated the activity of this plant on strains of Salmonella sp. with a bacteriostatic effect, corroborating our findings. The extract of C. obtusifolia significantly inhibited the growth of S. aureus MRSA8 with MIC of 64 μg/mL, and was active on 22 of the 36 tested microorganisms. The activity obtained in this study is much better than that mentioned by Doughari et al. [25]. In fact, they obtained MIC of 2000 μg/mL and 1000 μg/mL on clinical isolate of S. aureus and P. aeruginosa respectively. This could be due to the difference of phytochemical composition as the environmental conditions influence the availability as well as the amounts of some secondary metabolites in the plant. One of the best suited secondary metabolite from this plant is emodin (anthraquinone) which possesses a good antibacterial activity against S. aureus [26]; this could explain the interesting activity observed vis-à-vis of MRSA in this study. The extract of A. conyzoides had a relatively low activity on all studied microorganisms. Nevertheless, MIC of 256 μg/mL vis-a-vis E. aerogenes EA-CM64 and EA27, P. stuartii PS2636, S. aureus MRSA 4 which are multi-drug resistant clinical strains were obtained; this could explain the use of this plant in traditional medicine. Leaves and bark extracts of A. bonnei had a moderate activity against Gram-negative bacteria whilst bark extract was not active against Gram-positive species; this is explained by the fact that some antimicrobial compounds have specific activity spectrum (narrow) and therefore will not be active on certain categories or certain species of microorganisms [27]. Though the overall activity of the tested plants can be considered moderate, the results of this study are interesting taking in account the fact that most of the tested bacterial strains were MDR phenotypes.

Conclusion

The present study demonstrates that plants studied and mostly C. macrostachys, C. roseus and P. pinnata contain phytochemicals with valuable antibacterial activities vis-à-vis multi-drug resistant phenotypes. They could be used in the management of bacterial infections including MDR phenotypes.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium (Yaounde) for the plant identification. Authors are also thankful to UMR-MD1 (Mediterranean University, Marseille, France) and Dr Jean P. Dzoyem (University of Dschang) for providing some clinical bacteria.

Funding

No funding.

Availability of data and materials

The datasets supporting the conclusions of this article are presented in this main paper. Plant materials used in this study have been identified at the Cameroon National Herbarium where voucher specimens are deposited.

Authors’ contributions

IKV carried out the study; IKV and VK designed the experiments and wrote the manuscript; VK and VPB supervised the work; VK provided the bacterial strains; all authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable in this section.

Ethics approval and consent to participate

Not applicable in this section.

Abbreviations

A. conyzoidesAgeratum conyzoidesAlstonia booneiAlstonia booneiATCCAmerican type culture collectionC. macrostachysCroton macrostachysC. roseusCatharanthus roseusCassia obtusifoliaCassia obtusifoliaCFUColony forming unitDMSODimethylsufoxideE. aerogenesEnterobacter aerogenesE. cloacaeEnterobacter cloacaeE. coliEscherichia coliINT

p-Iodonitrotetrazolium chloride

K. pneumoniaeKlebsiella pneumoniaeMBCMinimal bactericidal concentrationMDRMulti-drug resistantMHAMueller Hinton AgarMHBMueller Hinton BrothMICMinimum inhibitory concentrationMRSA

Methicillin resistant Staphylococcus aureus

MSAMannitol Salt AgarP. aeruginosaPseudomonas aeruginosaP. pinnataPaullinia pinnataP. stuartiiProvidencia stuartiiRNDResistance nodulation cell divisionS. aureusStaphyloccocus aureus

References

  • 1. Pop-VicasATacconelliEGravensteinSLuBD’AgataEMInflux of multidrug-resistant, gram-negative bacteria in the hospital setting and the role of elderly patients with bacterial bloodstream infectionInfect Control Hosp Epidemiol200930432531[PubMed][Google Scholar]
  • 2. Garnacho-MonteroJCorcia-PalomoYAmaya-VillarRMartin-VillenLHow to treat VAP due to MDR pathogens in ICU patientsBMC Infect Dis201414135[PubMed][Google Scholar]
  • 3. VargiuVARuggeronePOppermanJTNguyenTSNikaidoHMolecular Mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitorsAntimicrob Agents Chemother20145810622434[PubMed][Google Scholar]
  • 5. RiceBLAntimicrobial Resistance in Gram-Positive BacteriaAm J Med2006119119[PubMed][Google Scholar]
  • 6. CDCAntibiotic resistance threats in the United States2013AtlantaU.S. Department of Health and Human Services, CDC
  • 7. WHO. Traditional medicine. 2003. http://www.who.int/mediacentre/factsheets/2003/fs134/en/. Accessed 20 June 2016.
  • 8. FAO. Trade in medicinal plants. 2004. ftp://ftp.fao.org/docrep/fao/008/af285e/af285e00.pdf. Accessed 20 June 2016.
  • 9. KueteVMetunoRNgameniBTsafackAMNgandeuFFotsoGWAntimicrobial activity of the methanolic extracts and compounds from Treculia obovoidea (Moraceae)J Ethnopharmacol2007112531536[PubMed][Google Scholar]
  • 10. TchindaFCVoukengKIPenlapBVKueteVAntibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteriaSaudi J Biol Sci2016[Google Scholar]
  • 11. MambeTFVoukengKIPenlapBVKueteVAntibacterial activities of methanol extracts from Alchornea cordifolia and four other Cameroonian plants against MDR phenotypesJ Taibah Univ Med Sci2016112121127[Google Scholar]
  • 12. HarborneJBPhytochemical Methods1973New YorkChapman and Hall
  • 13. KueteVNgameniBSimoCCTankeuRKNgadjuiBTMeyerJJLallNKuiateJRAntimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae)J Ethnopharmacol200812011724[PubMed][Google Scholar]
  • 14. CowanMMPlant products as antimicrobial agentsClin Microbiol Rev199912456482[PubMed][Google Scholar]
  • 15. MbavengTASandjoLPTankeoSBNdiforARPantaleonANagdjuiTBKueteVAntibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypesSpringerPlus20154823[PubMed][Google Scholar]
  • 16. FabryWOkemoPOAnsorgRAntibacterial activity of East African medicinal plantsJ Ethnopharmacol1998607984[PubMed][Google Scholar]
  • 17. KueteVPotential of Cameroonian plants and derived-products against microbial infections: A reviewPlanta Med201076147991[PubMed][Google Scholar]
  • 18. NayakBSPereiraPLMCatharanthus roseus flower extract has wound-healing activity in Sprague Dawley ratsBMC Complement Altern Med2006641[PubMed][Google Scholar]
  • 19. KamarajCRahumanAASivaCIyappanMKirthiVAEvaluation of antibacterial activity of selected medicinal plant extracts from south India against human pathogensAsian Pac J Trop Biomed201221296301[PubMed][Google Scholar]
  • 20. GoyalPKhannaAChauhanAChauhanGKaushikPIn vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activityInt J Green Pharm20082317681[PubMed][Google Scholar]
  • 21. AlmagroLFernandez-PerezFPedrenoMAIndole alkaloids from Catharanthus roseus: bioproduction and their effect on human healthMolecules20152029733000[PubMed][Google Scholar]
  • 22. AliAMALaftaHAJabarHKSAntibacterial activity of alkaloidal compound isolated from leaves of Catharanthus roseaus (L.) against multi-drug resistant strainsRes Pharm Biotech2014521321[Google Scholar]
  • 23. Obey KJ, von Wright A, Orjala J, Kauhanen J, Tikkanen-Kaukanen C. Antimicrobial activity of Croton macrostachyus stem bark extracts against several human pathogenic bacteria. J Pathog. 2016;2016:1453428.
  • 24. LungaKPTamokouJDDFodouopCSPKuiateJRTchoumboueJGatsingDAntityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of Paullinia pinnataSpringerplus20143302[PubMed][Google Scholar]
  • 25. DoughariJHEl-mahmoodAMTyoyinaIAntimicrobial activity of leaf extracts of Senna obtusifolia (L)Afr J Pharm Pharmacol200821713[Google Scholar]
  • 26. ZhouLYunBYWangYJXieMJAntibacterial mechanism of emodin on Staphylococcus aureusChin J Biochem Mol Biol20112712115660[Google Scholar]
  • 27. YamamotoTMatsuiHYamajiKTakahashiTOverbyANakamuraMMatsumotoANonakaKSunazukaTOmuraSNakanoHNarrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pyloriJ Infect Chemother2016[Google Scholar]
  • 28. MajekodunmiSOAdegokeOAOdekuOAFormulation of the extract of the stem bark of Alstonia boonei as tablet dosage formTrop J Pharm Res20087298794[PubMed][Google Scholar]
  • 29. AdoteyJPKAdukpoGEBoahenYOArmahFAA review of the ethnobotany and pharmacological importance of Alstonia boonei De wild (Apocynaceae)ISRN Pharmacol2012[PubMed][Google Scholar]
  • 30. BelloISOduolaTAdeosunOGOmisoreNOARaheemGOAdemosunAAEvaluation of Antimalarial Activity of Various Fractions of Morinda lucida Leaf Extract and Alstonia boonei stem BarkGlobal J Pharmacol20093316365[Google Scholar]
  • 31. AkinmoladunCAIbukunEOAforEAkinrinlolaBLOnibonTRAkinboboyeAOObuotorEMFarombiEOChemical constituents and antioxidant activity of Alstonia booneiAfr J Biotechnol200761011971201[Google Scholar]
  • 32. OlajideOAAweOSMakindeMJEkhelarIAOlusolaAMorebiseOOkpakoTDStudies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem barkJ Ethnopharmacol20007117986[PubMed][Google Scholar]
  • 33. FerreresFPereiraDMValentaoPAndradePBSeabraRMSottomayorMNew phenolic compounds and antioxidant potential of Catharanthus roseusJ Agric Food Chem2008562199679974[PubMed][Google Scholar]
  • 34. MustafaRNVerpoorteRPhenolic compounds in Catharanthus roseusPhytochem Rev20076243258[PubMed][Google Scholar]
  • 35. OkunadeALAgeratum conyzoides L. (Asteraceae)Fitoterapia2002731116[PubMed][Google Scholar]
  • 36. LavergneRTisaneurs et Plantes Médicinales Indigènes de La Réunion2001Saint Denis de La RéunionOrphie
  • 37. JonvilleMCKodjaHStrasbergDPichetteAOllivierEFrederichMAngenotLLegaultJAntiplasmodial, anti-inflammatory and cytotoxic activities of various plant extracts from the Mascarene ArchipelagoJ Ethnopharmacol201113652531[PubMed][Google Scholar]
  • 38. KueteVVoukengKITsobouRMbavengTAWienchBPenlapBVEfferthTCytotoxicity of Elaoephorbia drupifera and other Cameroonian medicinal plants against drug sensitive and multidrug resistant cancer cellsBMC Complement Altern Med201313250[PubMed][Google Scholar]
  • 39. BantieLAssefaSTeklehaimanotTEngidaworkEIn vivo antimalarial activity of the crude leaf extract and solvent fractions of Croton Macrostachyus Hocsht. (Euphorbiaceae) against Plasmodium berghei in miceBMC Complement Altern Med20141479[PubMed][Google Scholar]
  • 40. SalatinoASalatinoFMLNegriGTraditional uses, Chemistry and Pharmacology of Croton species (Euphorbiaceae)J Braz Chem Soc20071811133[PubMed][Google Scholar]
  • 41. KalayouSHaileselassieMGebre-EgziabherGTikueTSahleSTaddeleHGhezuMIn-vitro antimicrobial activity screening of some ethnoveterinary medicinal plants traditionally used against mastitis, wound and gastrointestinal tract complication in Tigray Region, EthiopiaAsian Pac J Trop Biomed20122751622[PubMed][Google Scholar]
  • 42. KapinguMCGuillaumeDMbwamboHZMoshiJMUlisoCFMahunnahRLADiterpenoids from the roots of Croton macrostachysPhytochemistry2000548767770[PubMed][Google Scholar]
  • 43. TalaFMTanNHNdontsaBLTanePTriterpenoids and phenolic compounds from Croton macrostachyusBiochem Syst Ecol20135113841[PubMed][Google Scholar]
  • 44. DaveHLedwaniLA review on anthraquinones isolated from Cassia species and their applicationsIndian J Nat Prod Resour201233291319[Google Scholar]
  • 45. YangYCLimMYLeeHSEmodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito speciesJ Agric Food Chem20035126762931[PubMed][Google Scholar]
  • 46. Yun-ChoiHSKimJHTakidoMPotential inhibitors of platelet aggregation from plant sources, v. anthraquinones from seeds of Cassia obtusifolia and related compoundsJ Nat Prod199053363033[PubMed][Google Scholar]
  • 47. JuMSKimHGChoiJGRyuJHHurJKimYJOhMSCassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson’s disease modelsFood Chem Toxicol2010488–9203744[PubMed][Google Scholar]
  • 48. MiemanangRKrohnKHussainHDongoEPaullinoside A and paullinomide A: a new cerebroside and a new ceramide from leaves of Paullinia pinnataZ Naturforsch200661112327[PubMed][Google Scholar]
  • 49. OkpekonTYolouSGleyeCRoblotFLoiseauPBoriesCGrellierPFrappierFLaurensAHocquemillerRAntiparasitic activities of medicinal plants used in Ivory CoastJ Ethnopharmacol2004901917[PubMed][Google Scholar]
  • 50. ViveirosMJesusABritoMLeandroCMartinsMOrdwayDMolnarAMMolnarJAmaralLInducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genesAntimicrob Agents Chemother200549357882[PubMed][Google Scholar]
  • 51. KueteVNgameniBTangmouoJGBollaJMAlibert-FrancoSNgadjuiBTPagesJMEfflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyroneAntimicrob Agents Chemother201054174952[PubMed][Google Scholar]
  • 52. OkusuHMaDNikaidoHAcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutantsJ Bacteriol19961783068[PubMed][Google Scholar]
  • 53. ElkinsCAMullisLBSubstrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coliAntimicrob Agents Chemother2007519239[PubMed][Google Scholar]
  • 54. KueteVAlibert-FrancoSEyongKONgameniBFolefocGNNguemevingJRTangmouoJGFotsoGWKomguemJOuahouoBMBollaJMChevalierJNgadjuiBTNkengfackAEPagesJMAntibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotypeInt J Antimicrob Agents20113715661[PubMed][Google Scholar]
  • 55. BaglioniPBiniLLiberatoriSPalliniVMarriLProteome analysis of Escherichia coli W3110 expressing an heterologous sigma factorProteomics20033106065[PubMed][Google Scholar]
  • 56. SarCMwenyaBSantosoBTakauraKMorikawaRIsogaiNAsakuraYTorideYTakahashiJEffect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reductionJ Anim Sci20058364452[PubMed][Google Scholar]
  • 57. GhisalbertiDMasiMPagesJMChevalierJChloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenesBiochem Biophys Res Commun200532811138[PubMed][Google Scholar]
  • 58. MalleaMChevalierJBornetCEyraudADavin-RegliABolletCPagesJMPorin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenesMicrobiology199814430039[PubMed][Google Scholar]
  • 59. MalleaMMahamoudAChevalierJAlibert-FrancoSBrouantPBarbeJPagesJMAlkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolatesBiochem J20033768015[PubMed][Google Scholar]
  • 60. PradelEPagesJMThe AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenesAntimicrob Agents Chemother200246264043[PubMed][Google Scholar]
  • 61. VoukengIKKueteVEpices Camerounaises et Bactéries multi-résistantes, Volume 12013
  • 62. ChevalierJPagesJMEyraudAMalleaMMembrane permeability modifications are involved in antibiotic resistance in Klebsiella pneumoniaeBiochem Biophys Res Commun20002744969[PubMed][Google Scholar]
  • 63. TranQTMahendranKRHajjarECeccarelliMDavin-RegliAWinterhalterMWeingartHPagesJMImplication of porins in beta-lactam resistance of Providencia stuartiiJ Biol Chem20102853227381[PubMed][Google Scholar]
  • 64. LorenziVMuselliABernardiniAFBertiLPagesJMAmaralLBollaJMGeraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative speciesAntimicrob Agents Chemother200953220911[PubMed][Google Scholar]
  • 65. PaudelAHamamotoHKobayashiYYokoshimaSFukuyamaTSekimizuKIdentification of novel deoxyribofuranosyl indole antimicrobial agentsJ Antibiot201265537[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.