Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay.
Journal: 2007/March - Journal of environmental monitoring : JEM
ISSN: 1464-0325
Abstract:
Genotoxicity potential of soils taken from wastewater irrigation areas and bioremediation sites was assessed using the Vicia faba root tip micronucleus assay. Twenty five soils were tested, of which 8 were uncontaminated soils and taken as the control to examine the influence of soil properties; 6 soils were obtained from paddy rice fields with a history of long-term wastewater irrigation; 6 soils were obtained from bioremediation sites to examine effects of bioremediation; and 5 PAH-contaminated soils were used to examine methodological effects between direct soil exposure and exposure to aqueous soil extracts on micronuclei (MN) frequency ( per thousand) in the V. faba root tips. Results indicate that soil properties had no significant influences on MN frequencies (p>> 0.05) when soil pH varied between 3.4 to 7.6 and organic carbon between 0.4% and 18.6%. The MN frequency measured in these control soils ranged from 1.6 per thousand to 5.8 per thousand. MN frequencies in soils from wastewater irrigation areas showed 2- to 48-fold increase as compared with the control. Soils from bioremediation sites showed a mixed picture: MN frequencies in some soils decreased after bioremediation, possibly due to detoxification; whereas in other cases remediated soils induced higher MN frequencies, suggesting that genotoxic substances might be produced during bioremediation. Exposure to aqueous soil extracts gave a higher MN frequency than direct exposure in 3 soils. However, the opposite was observed in the other two soils, suggesting that both exposure routes should be tested in case of negative results from one route. Data obtained from this study indicate that the MN assay is a sensitive assay suitable for evaluating genotoxicity of soils.
Relations:
Chemicals
(2)
Organisms
(1)
Processes
(1)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.