Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell
January/13/2004
Abstract
Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.
Publication
Journal: Nature
December/14/2003
Abstract
Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical-basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical-basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical-basal axis formation of the embryo, and thus determine the axiality of the adult plant.
Publication
Journal: Science
January/10/1999
Abstract
Polar auxin transport controls multiple developmental processes in plants, including the formation of vascular tissue. Mutations affecting the PIN-FORMED (PIN1) gene diminish polar auxin transport in Arabidopsis thaliana inflorescence axes. The AtPIN1gene was found to encode a 67-kilodalton protein with similarity to bacterial and eukaryotic carrier proteins, and the AtPIN1 protein was detected at the basal end of auxin transport-competent cells in vascular tissue. AtPIN1 may act as a transmembrane component of the auxin efflux carrier.
Publication
Journal: Nature
October/24/2001
Abstract
Polar transport of the phytohormone auxin mediates various processes in plant growth and development, such as apical dominance, tropisms, vascular patterning and axis formation. This view is based largely on the effects of polar auxin transport inhibitors. These compounds disrupt auxin efflux from the cell but their mode of action is unknown. It is thought that polar auxin flux is caused by the asymmetric distribution of efflux carriers acting at the plasma membrane. The polar localization of efflux carrier candidate PIN1 supports this model. Here we show that the seemingly static localization of PIN1 results from rapid actin-dependent cycling between the plasma membrane and endosomal compartments. Auxin transport inhibitors block PIN1 cycling and inhibit trafficking of membrane proteins that are unrelated to auxin transport. Our data suggest that PIN1 cycling is of central importance for auxin transport and that auxin transport inhibitors affect efflux by generally interfering with membrane-trafficking processes. In support of our conclusion, the vesicle-trafficking inhibitor brefeldin A mimics physiological effects of auxin transport inhibitors.
Publication
Journal: Current Biology
July/20/2006
Abstract
BACKGROUND
Plants produce leaf and flower primordia from a specialized tissue called the shoot apical meristem (SAM). Genetic studies have identified a large number of genes that affect various aspects of primordium development including positioning, growth, and differentiation. So far, however, a detailed understanding of the spatio-temporal sequence of events leading to primordium development has not been established.
RESULTS
We use confocal imaging of green fluorescent protein (GFP) reporter genes in living plants to monitor the expression patterns of multiple proteins and genes involved in flower primordial developmental processes. By monitoring the expression and polarity of PINFORMED1 (PIN1), the auxin efflux facilitator, and the expression of the auxin-responsive reporter DR5, we reveal stereotypical PIN1 polarity changes which, together with auxin induction experiments, suggest that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. Imaging of multiple GFP-protein fusions shows that these dynamics also correlate with the specification of primordial boundary domains, organ polarity axes, and the sites of floral meristem initiation.
CONCLUSIONS
These results provide new insight into auxin transport dynamics during primordial positioning and suggest a role for auxin transport in influencing primordial cell type.
Publication
Journal: Cell
February/13/2003
Abstract
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Both PIN1 localization and auxin transport are also sensitive to BFA. In this paper, we show that GNOM localizes to endosomes and is required for their structural integrity. We engineered a BFA-resistant version of GNOM. In plants harboring this fully functional GNOM variant, PIN1 localization and auxin transport are no longer sensitive to BFA, while trafficking of other proteins is still affected by the drug. Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways.
Publication
Journal: Plant Cell
February/18/2017
Abstract
The pin-formed mutant pin 1-1, one of the Arabidopsis flower mutants, has several structural abnormalities in inflorescence axes, flowers, and leaves. In some cases, pin1-1 forms a flower with abnormal structure (wide petals, no stamens, pistil-like structure with no ovules in the ovary) at the top of inflorescence axes. In other cases, no floral buds are formed on the axes. An independently isolated allelic mutant (pin1-2) shows similar phenotypes. These mutant phenotypes are exactly the same in wild-type plants cultured in the presence of chemical compounds known as auxin polar transport inhibitors: 9-hydroxyfluorene-9-carboxylic acid or N-(1-naphthyl)phthalamic acid. We tested the polar transport activity of indole-3-acetic acid and the endogenous amount of free indole-3-acetic acid in the tissue of inflorescence axes of the pin1 mutants and wild type. The polar transport activity in the pin 1-1 mutant and in the pin1-2 mutant was decreased to 14% and 7% of wild type, respectively. These observations strongly suggest that the normal level of polar transport activity in the inflorescence axes is required in early developmental stages of floral bud formation in Arabidopsis and that the primary function of the pin1 gene is auxin polar transport in the inflorescence axis.
Publication
Journal: Nature Cell Biology
May/26/2004
Abstract
The stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase. Furthermore, the absence of Pin1 or inhibition of PP2A stabilizes c-Myc. A stable c-Myc(T58A) mutant that cannot bind Pin1 or be dephosphorylated by PP2A replaces SV40 small T antigen in human cell transformation and tumorigenesis assays. Therefore, small T antigen, which inactivates PP2A, exerts its oncogenic potential by preventing dephosphorylation of c-Myc, resulting in c-Myc stabilization. Thus, Ras-dependent signalling cascades ensure transient and self-limiting accumulation of c-Myc, disruption of which contributes to human cell oncogenesis.
Publication
Journal: Nature
May/19/1996
Abstract
The NIMA kinase is essential for progression through mitosis in Aspergillus nidulans, and there is evidence for a similar pathway in other eukaryotic cells. Here we describe the human protein Pin1, a peptidyl-prolyl cis/trans isomerase (PPIase) that interacts with NIMA. PPIases are important in protein folding, assembly and/or transport, but none has so far been shown to be required for cell viability. Pin1 is nuclear PPIase containing a WW protein interaction domain, and is structurally and functionally related to Ess1/Ptf1, an essential protein in budding yeast. PPIase activity is necessary for Ess1/Pin1 function in yeast. Depletion of Pin1/Ess1 from yeast or HeLa cells induces mitotic arrest, whereas HeLa cells overexpressing Pin1 arrest in the G2 phase of the cell cycle. Pin1 is thus an essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity.
Publication
Journal: Nature Reviews Molecular Cell Biology
November/7/2007
Abstract
Protein phosphorylation regulates many cellular processes by causing changes in protein conformation. The prolyl isomerase PIN1 has been identified as a regulator of phosphorylation signalling that catalyses the conversion of specific phosphorylated motifs between the two completely distinct conformations in a subset of proteins. PIN1 regulates diverse cellular processes, including growth-signal responses, cell-cycle progression, cellular stress responses, neuronal function and immune responses. In line with the diverse physiological roles of PIN1, it has also been linked to several diseases that include cancer, Alzheimer's disease and asthma, and thus it might represent a novel therapeutic target.
Publication
Journal: Science
November/21/2004
Abstract
Polar transport-dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.
Publication
Journal: Science
December/23/1997
Abstract
Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.
Publication
Journal: Cell
July/27/1997
Abstract
The human rotamase or peptidyl-prolyl cis-trans isomerase Pin1 is a conserved mitotic regulator essential for the G2/M transition of the eukaryotic cell cycle. We report the 1.35 A crystal structure of Pin1 complexed with an AlaPro dipeptide and the initial characterization of Pin1's functional properties. The crystallographic structure as well as pH titration studies and mutagenesis of an active site cysteine suggest a catalytic mechanism that includes general acid-base and covalent catalysis during peptide bond isomerization. Pin1 displays a preference for an acidic residue N-terminal to the isomerized proline bond due to interaction of this acidic side chain with a basic cluster. This raises the possibility of phosphorylation-mediated control of Pin1-substrate interactions in cell cycle regulation.
Publication
Journal: Molecular Cell
February/2/2004
Abstract
The transcription factor NF-kappaB is activated by the degradation of its inhibitor IkappaBalpha, resulting in its nuclear translocation. However, the mechanism by which nuclear NF-kappaB is subsequently regulated is not clear. Here we demonstrate that NF-kappaB function is regulated by Pin1-mediated prolyl isomerization and ubiquitin-mediated proteolysis of its p65/RelA subunit. Upon cytokine treatment, Pin1 binds to the pThr254-Pro motif in p65 and inhibits p65 binding to IkappaBalpha, resulting in increased nuclear accumulation and protein stability of p65 and enhanced NF-kappaB activity. Significantly, Pin1-deficient mice and cells are refractory to NF-kappaB activation by cytokine signals. Moreover, the stability of p65 is controlled by ubiquitin-mediated proteolysis, facilitated by a cytokine signal inhibitor, SOCS-1, acting as a ubiquitin ligase. These findings uncover two important mechanisms of regulating NF-kappaB signaling and offer new insight into the pathogenesis and treatment of some human diseases such as cancers.
Publication
Journal: Nature Cell Biology
January/27/2013
Abstract
Pyruvate kinase M2 (PKM2) is upregulated in multiple cancer types and contributes to the Warburg effect by unclear mechanisms. Here we demonstrate that EGFR-activated ERK2 binds directly to PKM2 Ile 429/Leu 431 through the ERK2 docking groove and phosphorylates PKM2 at Ser 37, but does not phosphorylate PKM1. Phosphorylated PKM2 Ser 37 recruits PIN1 for cis-trans isomerization of PKM2, which promotes PKM2 binding to importin α5 and translocating to the nucleus. Nuclear PKM2 acts as a coactivator of β-catenin to induce c-Myc expression, resulting in the upregulation of GLUT1, LDHA and, in a positive feedback loop, PTB-dependent PKM2 expression. Replacement of wild-type PKM2 with a nuclear translocation-deficient mutant (S37A) blocks the EGFR-promoted Warburg effect and brain tumour development in mice. In addition, levels of PKM2 Ser 37 phosphorylation correlate with EGFR and ERK1/2 activity in human glioblastoma specimens. Our findings highlight the importance of nuclear functions of PKM2 in the Warburg effect and tumorigenesis.
Publication
Journal: Science
October/25/1999
Abstract
The plant hormone auxin is transported in a polar manner along the shoot-root axis, which requires efflux carriers such as PIN1. Asymmetric localization of PIN1 develops from a random distribution in Arabidopsis early embryogenesis. Coordinated polar localization of PIN1 is defective in gnom embryos. GNOM is a membrane-associated guanine-nucleotide exchange factor on ADP-ribosylation factor G protein (ARF GEF). Thus, GNOM-dependent vesicle trafficking may establish cell polarity, resulting in polar auxin transport.
Publication
Journal: Nature Chemical Biology
November/29/2007
Abstract
Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.
Publication
Journal: Molecular Cell
March/17/2005
Abstract
The Raf-1 kinase is an important signaling molecule, functioning in the Ras pathway to transmit mitogenic, differentiative, and oncogenic signals to the downstream kinases MEK and ERK. Because of its integral role in cell signaling, Raf-1 activity must be precisely controlled. Previous studies have shown that phosphorylation is required for Raf-1 activation, and here, we identify six phosphorylation sites that contribute to the downregulation of Raf-1 after mitogen stimulation. Five of the identified sites are proline-directed targets of activated ERK, and phosphorylation of all six sites requires MEK signaling, indicating a negative feedback mechanism. Hyperphosphorylation of these six sites inhibits the Ras/Raf-1 interaction and desensitizes Raf-1 to additional stimuli. The hyperphosphorylated/desensitized Raf-1 is subsequently dephosphorylated and returned to a signaling-competent state through interactions with the protein phosphatase PP2A and the prolyl isomerase Pin1. These findings elucidate a critical Raf-1 regulatory mechanism that contributes to the sensitive, temporal modulation of Ras signaling.
Publication
Journal: Nature
July/20/1999
Abstract
One of the neuropathological hallmarks of Alzheimer's disease is the neurofibrillary tangle, which contains paired helical filaments (PHFs) composed of the microtubule-associated protein tau. Tau is hyperphosphorylated in PHFs, and phosphorylation of tau abolishes its ability to bind microtubules and promote microtubule assembly. Restoring the function of phosphorylated tau might prevent or reverse PHF formation in Alzheimer's disease. Phosphorylation on a serine or threonine that precedes proline (pS/T-P) alters the rate of prolyl isomerization and creates a binding site for the WW domain of the prolyl isomerase Pin1. Pin1 specifically isomerizes pS/T-P bonds and regulates the function of mitotic phosphoproteins. Here we show that Pin1 binds to only one pT-P motif in tau and copurifies with PHFs, resulting in depletion of soluble Pin1 in the brains of Alzheimer's disease patients. Pin1 can restore the ability of phosphorylated tau to bind microtubules and promote microtubule assembly in vitro. As depletion of Pin1 induces mitotic arrest and apoptotic cell death, sequestration of Pin1 into PHFs may contribute to neuronal death. These findings provide a new insight into the pathogenesis of Alzheimer's disease.
Publication
Journal: Science
March/11/1999
Abstract
Protein-interacting modules help determine the specificity of signal transduction events, and protein phosphorylation can modulate the assembly of such modules into specific signaling complexes. Although phosphotyrosine-binding modules have been well-characterized, phosphoserine- or phosphothreonine-binding modules have not been described. WW domains are small protein modules found in various proteins that participate in cell signaling or regulation. WW domains of the essential mitotic prolyl isomerase Pin1 and the ubiquitin ligase Nedd4 bound to phosphoproteins, including physiological substrates of enzymes, in a phosphorylation-dependent manner. The Pin1 WW domain functioned as a phosphoserine- or phosphothreonine-binding module, with properties similar to those of SRC homology 2 domains. Phosphoserine- or phosphothreonine-binding activity was required for Pin1 to interact with its substrates in vitro and to perform its essential function in vivo.
Publication
Journal: Science
February/13/2007
Abstract
The 66-kilodalton isoform of the growth factor adapter Shc (p66Shc) translates oxidative damage into cell death by acting as reactive oxygen species (ROS) producer within mitochondria. However, the signaling link between cellular stress and mitochondrial proapoptotic activity of p66Shc was not known. We demonstrate that protein kinase C beta, activated by oxidative conditions in the cell, induces phosphorylation of p66Shc and triggers mitochondrial accumulation of the protein after it is recognized by the prolyl isomerase Pin1. Once imported, p66Shc causes alterations of mitochondrial Ca2+ responses and three-dimensional structure, thus inducing apoptosis. These data identify a signaling route that activates an apoptotic inducer shortening the life span and could be a potential target of pharmacological approaches to inhibit aging.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/20/2006
Abstract
Recent studies show that plant organ positioning may be mediated by localized concentrations of the plant hormone auxin. Auxin patterning in the shoot apical meristem is in turn brought about by the subcellular polar distribution of the putative auxin efflux mediator, PIN1. However, the question of what signals determine PIN1 polarization and how this gives rise to regular patterns of auxin concentration remains unknown. Here we address these questions by using mathematical modeling combined with confocal imaging. We propose a model that is based on the assumption that auxin influences the polarization of its own efflux within the meristem epidermis. We show that such a model is sufficient to create regular spatial patterns of auxin concentration on systems with static and dynamic cellular connectivities, the latter governed by a mechanical model. We also optimize parameter values for the PIN1 dynamics by using a detailed auxin transport model, for which parameter values are taken from experimental estimates, together with a template consisting of cell and wall compartments as well as PIN1 concentrations quantitatively extracted from confocal data. The model shows how polarized transport can drive the formation of regular patterns.
Publication
Journal: Plant Cell
December/19/2007
Abstract
Auxin plays a key role in embryogenesis and seedling development, but the auxin sources for the two processes are not defined. Here, we demonstrate that auxin synthesized by the YUCCA (YUC) flavin monooxygenases is essential for the establishment of the basal body region during embryogenesis and the formation of embryonic and postembryonic organs. Both YUC1 and YUC4 are expressed in discrete groups of cells throughout embryogenesis, and their expression patterns overlap with those of YUC10 and YUC11 during embryogenesis. The quadruple mutants of yuc1 yuc4 yuc10 yuc11 fail to develop a hypocotyl and a root meristem, a phenotype similar to those of mp and tir1 afb1 afb2 afb3 auxin signaling mutants. We further show that YUC genes play an essential role in the formation of rosette leaves by analyzing combinations of yuc mutants and the polar auxin transport mutants pin1 and aux1. Disruption of YUC1, YUC4, or PIN1 alone does not abolish leaf formation, but the triple mutant yuc1 yuc4 pin1 fails to form leaves and flowers. Furthermore, disruption of auxin influx carrier AUX1 in the quadruple mutant yuc1 yuc2 yuc4 yuc6, but not in wild-type background, phenocopies yuc1 yuc4 pin1, demonstrating that auxin influx is required for plant leaf and flower development. Our data demonstrate that auxin synthesized by the YUC flavin monooxygenases is an essential auxin source for Arabidopsis thaliana embryogenesis and postembryonic organ formation.
Publication
Journal: EMBO Journal
August/8/2001
Abstract
Phosphorylation on serines or threonines preceding proline (Ser/Thr-Pro) is a major signaling mechanism. The conformation of a subset of phosphorylated Ser/Thr-Pro motifs is regulated by the prolyl isomerase Pin1. Inhibition of Pin1 induces apoptosis and may also contribute to neuronal death in Alzheimer's disease. However, little is known about the role of Pin1 in cancer or in modulating transcription factor activity. Here we report that Pin1 is strikingly overexpressed in human breast cancers, and that its levels correlate with cyclin D1 levels in tumors. Overexpression of Pin1 increases cellular cyclin D1 protein and activates its promoter. Furthermore, Pin1 binds c-Jun that is phosphorylated on Ser63/73-Pro motifs by activated JNK or oncogenic Ras. Moreover, Pin1 cooperates with either activated Ras or JNK to increase transcriptional activity of c-Jun towards the cyclin D1 promoter. Thus, Pin1 is up-regulated in human tumors and cooperates with Ras signaling in increasing c-Jun transcriptional activity towards cyclin D1. Given the crucial roles of Ras signaling and cyclin D1 overexpression in oncogenesis, our results suggest that overexpression of Pin1 may promote tumor growth.
load more...