Electrospray ionization mass spectrometer with new features
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(51)
Publication
Journal: The Plant journal : for cell and molecular biology
February/24/2003
Abstract
The development of a germinating embryo into an autotrophic seedling is arrested under conditions of water deficit. This ABA-mediated developmental checkpoint requires the bZIP transcription factor ABI5. Here, we used abi3-1, which is also unable to execute this checkpoint, to investigate the relative role of ABI3 and ABI5 in this process. In wild-type Arabidopsis plants, ABI3 expression and activity parallel those described for ABI5 following stratification. During this process, transcript levels of late embryogenesis genes such as AtEm1 and AtEm6 are also re-induced, which might be responsible for the acquired osmotic tolerance in germinated embryos whose growth is arrested. ABI5 expression is greatly reduced in abi3-1 mutants, which has low AtEm1 or AtEm6 expression. Cross complementation experiments showed that 35S-ABI5 could complement abi3-1, whereas 35S-ABI3 cannot complement abi5-4. These results indicate that ABI5 acts downstream of ABI3 to reactivate late embryogenesis programmes and to arrest growth of germinating embryos. Although ABI5 is consistently located in the nucleus, chromosomal immunoprecipitation (ChIP) experiments revealed that ABA increases ABI5 occupancy on the AtEm6 promoter.
Publication
Journal: Cell
December/27/1998
Abstract
The HERG voltage-dependent K+ channel plays a role in cardiac electrical excitability, and when defective, it underlies one form of the long QT syndrome. We have determined the crystal structure of the HERG K+ channel N-terminal domain and studied its role as a modifier of gating using electrophysiological methods. The domain is similar in structure to a bacterial light sensor photoactive yellow protein and provides the first three-dimensional model of a eukaryotic PAS domain. Scanning mutagenesis of the domain surface has allowed the identification of a hydrophobic "hot spot" forming a putative interface with the body of the K+ channel to which it tightly binds. The presence of the domain attached to the channel slows the rate of deactivation. Given the roles of PAS domains in biology, we propose that the HERG N-terminal domain has a regulatory function.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/6/2006
Abstract
The nuclear pore complex (NPC) consists of multiple copies of approximately 30 different proteins [nucleoporins (nups)], forming a channel in the nuclear envelope that mediates macromolecular transport between the cytosol and the nucleus. With <5% of the nup residues currently available in experimentally determined structures, little is known about the detailed structure of the NPC. Here, we use a combined computational and biochemical approach to assign folds for approximately 95% of the residues in the yeast and vertebrate nups. These fold assignments suggest an underlying simplicity in the composition and modularity in the architecture of all eukaryotic NPCs. The simplicity in NPC composition is reflected in the presence of only eight fold types, with the three most frequent folds accounting for approximately 85% of the residues. The modularity in NPC architecture is reflected in its hierarchical and symmetrical organization that partitions the predicted nup folds into three groups: the transmembrane group containing transmembrane helices and a cadherin fold, the central scaffold group containing beta-propeller and alpha-solenoid folds, and the peripheral FG group containing predominantly the FG repeats and the coiled-coil fold. Moreover, similarities between structures in coated vesicles and those in the NPC support our prior hypothesis for their common evolutionary origin in a progenitor protocoatomer. The small number of predicted fold types in the NPC and their internal symmetries suggest that the bulk of the NPC structure has evolved through extensive motif and gene duplication from a simple precursor set of only a few proteins.
Publication
Journal: Analytical chemistry
August/10/2000
Abstract
We describe the protein search engine "ProFound", which employs a Bayesian algorithm to identify proteins from protein databases using mass spectrometric peptide mapping data. The algorithm ranks protein candidates by taking into account individual properties of each protein in the database as well as other information relevant to the peptide mapping experiment. The program consistently identifies the correct protein(s) even when the data quality is relatively low or when the sample consists of a simple mixture of proteins. Illustrative examples of protein identifications are provided.
Publication
Journal: The Journal of biological chemistry
December/19/1985
Abstract
The COOH terminus of the externally disposed variant surface glycoprotein (VSG) of the eukaryotic pathogenic protozoan Trypanosoma brucei strain 427 variant MITat 1.4 (117) is covalently linked to a novel phosphatidylinositol-containing glycolipid. This conclusion is supported by analysis of the products of nitrous acid deamination or Staphylococcus aureus phosphatidylinositol-specific phospholipase C treatment of purified membrane-form VSG. Lysis of trypanosomes is accompanied by release of soluble VSG, catalyzed by activation of an endogenous phospholipase C. The only apparent difference between membrane-form VSG and soluble VSG is the removal of sn-1,2-dimyristylglycerol. The COOH-terminal glycopeptide derived by Pronase digestion of soluble VSG was characterized by chemical modification and digestion with alkaline phosphatase. The results are consistent with the single non-N-acetylated glucosamine residue being the reducing terminus of the oligosaccharide and in a glycosidic linkage to a myo-inositol monophosphate that is probably myo-inositol 1,2-cyclic monophosphate. A partial structure for the VSG COOH-terminal moiety is presented. This structure represents a new type of eukaryotic post-translational protein modification and membrane anchor. We discuss the relevance of this structure to observations that have been made with other eukaryotic membrane proteins.
Publication
Journal: Nature
March/23/2009
Abstract
Nuclear pore complexes (NPCs) act as effective and robust gateways between the nucleus and the cytoplasm, selecting for the passage of particular macromolecules across the nuclear envelope. NPCs comprise an elaborate scaffold that defines a approximately 30 nm diameter passageway connecting the nucleus and the cytoplasm. This scaffold anchors proteins termed 'phenylalanine-glycine' (FG)-nucleoporins, the natively disordered domains of which line the passageway and extend into its lumen. Passive diffusion through this lined passageway is hindered in a size-dependent manner. However, transport factors and their cargo-bound complexes overcome this restriction by transient binding to the FG-nucleoporins. To test whether a simple passageway and a lining of transport-factor-binding FG-nucleoporins are sufficient for selective transport, we designed a functionalized membrane that incorporates just these two elements. Here we demonstrate that this membrane functions as a nanoselective filter, efficiently passing transport factors and transport-factor-cargo complexes that specifically bind FG-nucleoporins, while significantly inhibiting the passage of proteins that do not. This inhibition is greatly enhanced when transport factor is present. Determinants of selectivity include the passageway diameter, the length of the nanopore region coated with FG-nucleoporins, the binding strength to FG-nucleoporins, and the antagonistic effect of transport factors on the passage of proteins that do not specifically bind FG-nucleoporins. We show that this artificial system faithfully reproduces key features of trafficking through the NPC, including transport-factor-mediated cargo import.
Publication
Journal: The Journal of biological chemistry
March/13/1997
Abstract
We have identified the site of molecular interaction between nitric oxide (NO) and p21(ras) responsible for initiation of signal transduction. We found that p21(ras) was singly S-nitrosylated and localized this modification to a fragment of p21(ras) containing Cys118. A mutant form of p21(ras), in which Cys118 was changed to a serine residue and termed p21(ras)C118S, was not S-nitrosylated. NO-related species stimulated guanine nucleotide exchange on wild-type p21(ras), resulting in an active form, but not on p21(ras)C118S. Furthermore, in contrast to parental Jurkat T cells, NO-related species did not stimulate mitogen-activated protein kinase activity in cells transfected with p21(ras)C118S. These data indicate that Cys118 is a critical site of redox regulation of p21(ras), and S-nitrosylation of this residue triggers guanine nucleotide exchange and downstream signaling.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/16/2007
Abstract
Individual posttranslational modifications (PTMs) on histones have well established roles in certain biological processes, notably transcriptional programming. Recent genomewide studies describe patterns of covalent modifications, such as H3 methylation and acetylation at promoters of specific target genes, or "bivalent domains," in stem cells, suggestive of a possible combinatorial interplay between PTMs on the same histone. However, detection of long-range PTM associations is often problematic in antibody-based or traditional mass spectrometric-based analyses. Here, histone H3 from a ciliate model was analyzed as an enriched source of transcriptionally active chromatin. Using a recently developed mass spectrometric approach, combinatorial modification states on single, long N-terminal H3 fragments (residues 1-50) were determined. The entire modification status of intact N termini was obtained and indicated correlations between K4 methylation and H3 acetylation. In addition, K4 and K27 methylation were identified concurrently on one H3 species. This methodology is applicable to other histones and larger polypeptides and will likely be a valuable tool in understanding the roles of combinatorial patterns of PTMs.
Publication
Journal: Analytical chemistry
January/27/1999
Abstract
Although mass spectrometric peptide mapping has become an established technique for the rapid identification of proteins isolated by polyacrylamide gel electrophoresis (PAGE), the results of the identification procedure can sometimes be ambiguous. Such ambiguities become increasingly prevalent for proteins isolated as mixtures or when only very small amounts of the proteins are isolated. The quality of the identification procedure can be improved by increasing the number of peptides that are extracted from the gel. Here we show that cysteine alkylation is required to ensure maximal coverage in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mapping of proteins isolated by PAGE. In the described procedure, alkylation was performed prior to electrophoresis to avoid the adventitious formation of acrylamide adducts during electrophoresis. In this way, homogeneous alkylation was obtained with three different alkylating reagents (4-vinylpyridine, iodoacetamide, acrylamide). Cysteine alkylation was also used as a tool for the identification of cysteine-containing peptides. Using a 1:1 mixture of unlabeled acrylamide and deuterium-labeled acrylamide ([2,3,3'-D3]acrylamide), the proteins of interest were alkylated prior to electrophoretic separation. Peptide mixtures produced by trypsin digestion of the resulting protein bands were analyzed by MALDI-TOF MS, and the cysteine content of the peptides was inferred from the isotopic distributions. The cysteine content information was readily obtained and used to improve the protein identification process.
Publication
Journal: The Journal of biological chemistry
January/5/2010
Abstract
SMARCAL1 (also known as HARP) is a SWI/SNF family protein with an ATPase activity stimulated by DNA containing both single-stranded and double-stranded regions. Mutations in SMARCAL1 are associated with the disease Schimke immuno-osseous dysplasia, a multisystem autosomal recessive disorder characterized by T cell immunodeficiency, growth inhibition, and renal dysfunction. The cellular function of SMARCAL1, however, is unknown. Here, using Xenopus egg extracts and mass spectrometry, we identify SMARCAL1 as a protein recruited to double-stranded DNA breaks. SMARCAL1 binds to double-stranded breaks and stalled replication forks in both egg extract and human cells, specifically colocalizing with the single-stranded DNA binding factor RPA. In addition, SMARCAL1 interacts physically with RPA independently of DNA. SMARCAL1 is phosphorylated in a caffeine-sensitive manner in response to double-stranded breaks and stalled replication forks. It has been suggested that stalled forks can be stabilized by a mechanism involving caffeine-sensitive kinases, or they collapse and subsequently recruit Rad51 to promote homologous recombination repair. We show that depletion of SMARCAL1 from U2OS cells leads to increased frequency of RAD51 foci upon generation of stalled replication forks, indicating that fork breakdown is more prevalent in the absence of SMARCAL1. We propose that SMARCAL1 is a novel DNA damage-binding protein involved in replication fork stabilization.
Publication
Journal: Analytical chemistry
February/10/1993
Abstract
A simple and effective device for investigating heat-induced denaturation of proteins by electrospray ionization mass spectrometry is described. Results are presented for the denaturation as a function of temperature and solution pH of bovine ubiquitin and bovine cytochrome c. These results are in concert with and extend the earlier results of LeBlanc et al. (Org. Mass Spectrom. 1991, 26, 831). The cooperative effects of pH and temperature on the denaturation of ubiquitin and cytochrome c were investigated. Electrospray ionization mass spectrometry is also shown to be a useful probe of the reversibility of heat-induced denaturation of proteins. Finally, it is demonstrated that heat-induced denaturation can be used to improve the mass spectrometric response of proteins that do not normally yield useful spectra when the solubilized protein is electrosprayed at ambient temperatures.
Publication
Journal: Molecular & cellular proteomics : MCP
October/6/2011
Abstract
The presence of multiple membrane-bound intracellular compartments is a major feature of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. Here, we identify the SEA (Seh1-associated) protein complex in yeast that contains the nucleoporin Seh1 and Sec13, the latter subunit of both the nuclear pore complex and the COPII coating complex. The SEA complex also contains Npr2 and Npr3 proteins (upstream regulators of TORC1 kinase) and four previously uncharacterized proteins (Sea1-Sea4). Combined computational and biochemical approaches indicate that the SEA complex proteins possess structural characteristics similar to the membrane coating complexes COPI, COPII, the nuclear pore complex, and, in particular, the related Vps class C vesicle tethering complexes HOPS and CORVET. The SEA complex dynamically associates with the vacuole in vivo. Genetic assays indicate a role for the SEA complex in intracellular trafficking, amino acid biogenesis, and response to nitrogen starvation. These data demonstrate that the SEA complex is an additional member of a family of membrane coating and vesicle tethering assemblies, extending the repertoire of protocoatomer-related complexes.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/10/1984
Abstract
Proteins exposed to glucose over long periods are known to undergo physicochemical changes including crosslinking and formation of brown fluorescent pigments of poorly characterized structure. Acid hydrolysis of both browned poly(L-lysine) and browned bovine serum albumin is found to release a major fluorescent chromophore, which after alkalinization is extractable into organic solvents and which can be purified by silica gel chromatography. The fluorescence properties of this compound very closely resemble those of the bulk browned polypeptides. By NMR, mass spectroscopy, and chemical derivatization, this compound is assigned the structure 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI). Confirmation was obtained by independent chemical synthesis from furylglyoxal and ammonia. The incorporation of two peptide-derived amine nitrogens and two glucose residues in FFI strongly suggests that peptide-bound FFI precursors are implicated in the crosslinking of proteins by glucose in vivo. This reaction has potential implications in the understanding of glucose-mediated protein modifications and their role in the complications of diabetes and aging.
Publication
Journal: Nature structural & molecular biology
March/1/2010
Abstract
The CagA protein of Helicobacter pylori interacts with numerous cellular factors and is associated with increased virulence and risk of gastric carcinoma. We present here the cocrystal structure of a subdomain of CagA with the human kinase PAR1b/MARK2, revealing that a CagA peptide mimics substrates of this kinase family, resembling eukaryotic protein kinase inhibitors. Mutagenesis of conserved residues central to this interaction renders CagA inactive as an inhibitor of MARK2.
Publication
Journal: Molecular cell
April/6/2005
Abstract
The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectrometry. Our study identified numerous proteins in association with particular cyclin-Cdk complexes. These included phosphorylation substrates, ubiquitination-degradation proteins, adaptors, and inhibitors. Some associations were previously known, and for others, we confirmed their specificity and biological relevance. Using a hypothesis-driven mass spectrometric approach, we also mapped in vivo phosphorylation at Cdk consensus motif-containing peptides within several cyclin-associated candidate Cdk substrates. Our results demonstrate that this approach can be used to detect a host of transient and dynamic protein associations within a biological module.
Publication
Journal: Analytical chemistry
December/15/1994
Abstract
Positive ion electrospray ionization mass spectra of polypeptides are usually obtained from solutions that are acidified and therefore contain relatively high concentrations of anions. The present study describes an investigation of the effects of these ubiquitous anions on the positive ion electrospray ionization mass spectra of peptides and proteins. Certain anionic species in the spray solutions were observed to cause a marked decrease in the net average charge of peptide and protein ions in the mass spectra compared to the average charge measured in the absence of these anions. This charge neutralization effect was found to depend solely on the nature of the anionic species and was independent of the source of the anion (acid or salt), with the propensity for neutralization following the order: CCl3COO- > CF3COO- > CH3COO- approximately Cl-. A mechanism for the observed charge reduction effect is proposed that involves two steps. The first step occurs in solution, where an anion pairs with a positively charged basic group on the peptide. The second step occurs during the process of desolvation or in the gas phase, where the ion pair dissociates to yield the neutral acid and the peptide with reduced charge state. The different propensities for charge neutralization of the different anionic species is presumed to reflect the avidity of the anion-peptide interaction. These findings demonstrate that any attempt to correlate the distribution of charge states observed on proteins in the gas phase (by positive ion electrospray ionization mass spectrometry) with the net charge residing on the protein in solution will require that the described anion effect be taken into account. In addition, it appears that some control over the distribution of charge states on peptides and protein ions can be exercised by an appropriate choice of anion in the electrospray solution.
Publication
Journal: The EMBO journal
February/10/1999
Abstract
Stat1alpha is a latent cytoplasmic transcription factor activated in response to interferon-gamma (IFN-gamma). The C-terminal 38 amino acids of Stat1alpha are required to trigger transcription and therefore may possibly serve as a transcription activation domain (TAD). Here we show that the C-terminus of Stat1alpha is an independent TAD which can interact with a specific group of nuclear proteins. Mutation of the Stat1 Ser727 and Leu724 decreases its transcriptional activity and affinity for the nuclear proteins. One of the interacting proteins was identified as MCM5, a member of the mini-chromosome maintenance (MCM) family involved in DNA replication. Both in vitro and in vivo interaction of Stat1alpha and MCM5 were demonstrated. Furthermore, the in vitro interaction required Ser727 and was enhanced by its phosphorylation. Transient over-expression of MCM5 enhanced transcriptional activation by Stat1alpha in a Ser727-dependent manner. Finally, changes in the level of nuclear localized MCM5 during the cell cycle correlated with the changes in transcriptional response to IFN-gamma acting through Stat1alpha. These results strongly suggest that MCM5 is recruited through interaction with Stat1alpha in a Ser727- and Leu724-dependent manner to play a role in optimal transcriptional activation.
Publication
Journal: Protein science : a publication of the Protein Society
October/29/1995
Abstract
A simple biochemical method that combines enzymatic proteolysis and matrix-assisted laser desorption ionization mass spectrometry was developed to probe the solution structure of DNA-binding proteins. The method is based on inferring structural information from determinations of protection against enzymatic proteolysis, as governed by solvent accessibility and protein flexibility. This approach was applied to the study of the transcription factor Max--a member of the basic/helix-loop-helix/zipper family of DNA-binding proteins. In the absence of DNA and at low ionic strengths, Max is rapidly digested by each of six endoproteases selected for the study, results consistent with an open and flexible structure of the protein. At physiological salt levels, the rates of digestion are moderately slowed; this and the patterns of cleavage are consistent with homodimerization of the protein through a predominantly hydrophobic interface. In the presence of Max-specific DNA, the protein becomes dramatically protected against proteolysis, exhibiting up to a 100-fold reduction in cleavage rates. Over a 2-day period, both complete and partial proteolysis of the Max-DNA complex is observed. The partial proteolytic fragmentation patterns reflect a very high degree of protection in the N-terminal and helix-loop-helix regions of the protein, correlating with those expected of a stable dimer bound to DNA at its basic N-terminals. Less protection is seen at the C-terminal where a slow, sequential proteolytic cleavage occurs, correlating to the presence of a leucine zipper. The results also indicate a high affinity of Max for its target DNA that remains high even when the leucine zipper is proteolytically removed. In addition to the study of the helix-loop-helix protein Max, the present method appears well suited for a range of other structural biological applications.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/12/2003
Abstract
A method is presented for the rapid detection and characterization of trace amounts of peptides secreted from microorganisms, including pheromones, virulence factors, and quorum-sensing peptides. The procedure, based on targeted multistage MS, uses a novel matrix-assisted laser desorptionionization-ion trap mass spectrometer to overcome limitations of current MS methods (limited dynamic range, signal suppression effects, and chemical noise) that impair observation of low abundance peptides from complex biological matrixes. Here, secreted peptides that are hypothesized to be present in the supernatant, but that may not be sufficiently abundant to be observed in single-stage mass spectra, are subjected to multistage MS. Highly specific fragmentation signatures enable unambiguous identification of the peptides of interest and differentiation of the signals from the background. As examples, we demonstrate the rapid (<1 min) determination of the mating type of cells in colonies of Saccharomyces cerevisiae and the elucidation of autoinducing peptides (AIPs) from supernatants of pathogenic Staphylococci. We confirm the primary structures of the agrD encoded cyclic AIPs of Staphylococcus aureus for groups I, II, and IV and provide direct evidence that the native group-III AIP is a heptapeptide (INCDFLL). We also show that the homologous peptide from Staphylococcus intermedius is a nonapeptide (RIPTSTGFF) with a lactone ring formed through condensation of the serine side chain with the C terminus of the peptide. This is the first demonstration of cyclization in a staphylococcal AIP that occurs via lactone formation. These examples demonstrate the analytical power of the present procedure for characterizing secreted peptides and its potential utility for identifying microorganisms.
Publication
Journal: Molecular cell
April/16/2013
Abstract
DNA double-strand breaks (DSBs) activate a DNA damage response (DDR) that coordinates checkpoint pathways with DNA repair. ATM and ATR kinases are activated sequentially. Homology-directed repair (HDR) is initiated by resection of DSBs to generate 3' single-stranded DNA overhangs. How resection and HDR are activated during DDR is not known, nor are the roles of ATM and ATR in HDR. Here, we show that CtIP undergoes ATR-dependent hyperphosphorylation in response to DSBs. ATR phosphorylates an invariant threonine, T818 of Xenopus CtIP (T859 in human). Nonphosphorylatable CtIP (T818A) does not bind to chromatin or initiate resection. Our data support a model in which ATM activity is required for an early step in resection, leading to ATR activation, CtIP-T818 phosphorylation, and accumulation of CtIP on chromatin. Chromatin binding by modified CtIP precedes extensive resection and full checkpoint activation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/11/2012
Abstract
A cherished tenet of nucleic acid enzymology holds that synthesis of polynucleotide 3'-5' phosphodiesters proceeds via the attack of a 3'-OH on a high-energy 5' phosphoanhydride: either a nucleoside 5'-triphosphate in the case of RNA/DNA polymerases or an adenylylated intermediate A(5')pp(5')N--in the case of polynucleotide ligases. RtcB exemplifies a family of RNA ligases implicated in tRNA splicing and repair. Unlike classic ligases, RtcB seals broken RNAs with 3'-phosphate and 5'-OH ends. Here we show that RtcB executes a three-step ligation pathway entailing (i) reaction of His337 of the enzyme with GTP to form a covalent RtcB-(histidinyl-N)-GMP intermediate; (ii) transfer of guanylate to a polynucleotide 3'-phosphate to form a polynucleotide-(3')pp(5')G intermediate; and (iii) attack of a 5'-OH on the -N(3')pp(5')G end to form the splice junction. RtcB is structurally sui generis, and its chemical mechanism is unique. The wide distribution of RtcB proteins in bacteria, archaea, and metazoa raises the prospect of an alternative enzymology based on covalently activated 3' ends.
Publication
Journal: The EMBO journal
December/12/2007
Abstract
The vector-borne, protistan parasite Trypanosoma brucei is the only known eukaryote with a multifunctional RNA polymerase I that, in addition to ribosomal genes, transcribes genes encoding the parasite's major cell-surface proteins-the variant surface glycoprotein (VSG) and procyclin. In the mammalian bloodstream, antigenic variation of the VSG coat is the parasite's means to evade the immune response, while procyclin is necessary for effective establishment of trypanosome infection in the fly. Moreover, the exceptionally high efficiency of mono-allelic VSG expression is essential to bloodstream trypanosomes since its silencing caused rapid cell-cycle arrest in vitro and clearance of parasites from infected mice. Here we describe a novel protein complex that recognizes class I promoters and is indispensable for class I transcription; it consists of a dynein light chain and six polypeptides that are conserved only among trypanosomatid parasites. In accordance with an essential transcriptional function of the complex, silencing the expression of a key subunit was lethal to bloodstream trypanosomes and specifically affected the abundance of rRNA and VSG mRNA. The complex was dubbed class I transcription factor A.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/26/2002
Abstract
The CC-chemokine receptor 5 (CCR5) is the major coreceptor for the entry of macrophage-tropic (R5) HIV-1 strains into target cells. Posttranslational sulfation of tyrosine residues in the N-terminal tail of CCR5 is critical for high affinity interaction of the receptor with the HIV-1 envelope glycoprotein gp120 in complex with CD4. Here, we focused on defining precisely the sulfation pattern of the N terminus of CCR5 by using recombinant human tyrosylprotein sulfotransferases TPST-1 and TPST-2 to modify a synthetic peptide that corresponds to amino acids 2-18 of the receptor (CCR5 2-18). Analysis of the reaction products was made with a combination of reversed-phase HPLC, proteolytic cleavage, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). We found that CCR5 2-18 is sulfated by both TPST isoenzymes leading to a final product with four sulfotyrosine residues. Sulfates were added stepwise to the peptide producing specific intermediates with one, two, or three sulfotyrosines. The pattern of sulfation in these intermediates suggests that Tyr-14 and Tyr-15 are sulfated first, followed by Tyr-10, and finally Tyr-3. These results represent a detailed analysis of the multiple sulfation reaction of a peptide substrate by TPSTs and provide a structural basis for understanding the role of tyrosine sulfation of CCR5 in HIV-1 coreceptor and chemokine receptor function.
Publication
Journal: The Journal of biological chemistry
March/6/1988
Abstract
Trypanosoma brucei variant surface glycoproteins are apparently synthesized with a hydrophobic carboxyl-terminal peptide that is cleaved and replaced by a complex glycosylphosphatidylinositol membrane anchor within 1 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated core glycolipid that would be transferred en bloc to the variant surface glycoprotein polypeptide. We report the purification and chemical characterization of a glycolipid from T. brucei that has properties consistent with a role as a variant surface glycoprotein glycolipid donor. This candidate glycolipid precursor has been defined by thin-layer chromatography of extracts of trypanosomes metabolically labeled with radioactive myristic acid, ethanolamine, glucosamine, mannose, and phosphate and by enzymatic, chemical, and gas chromatographic-mass spectrometric analysis. Mild alkali released 100% of the myristic acid, and reaction with phospholipase A2 released 50%. Nitrous acid deamination generated dimyristylphosphatidylinositol, and periodate oxidation released phosphatidic acid. Treatment of purified glycolipid with phosphatidylinositol-specific phospholipase C released dimyristylglycerol and a water-soluble glycan that was sized on Bio-Gel P-4 columns. The candidate precursor contained mannose, myristic acid, phosphate, and ethanolamine with an unsubstituted amino group, but not galactose.
load more...