Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(4K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature
August/16/2012
Abstract
To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase ε (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Publication
Journal: Nature Genetics
September/10/2006
Abstract
Aberrant DNA methylation of CpG islands has been widely observed in human colorectal tumors and is associated with gene silencing when it occurs in promoter areas. A subset of colorectal tumors has an exceptionally high frequency of methylation of some CpG islands, leading to the suggestion of a distinct trait referred to as 'CpG island methylator phenotype', or 'CIMP'. However, the existence of CIMP has been challenged. To resolve this continuing controversy, we conducted a systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology, involving 295 primary human colorectal tumors and 16,785 separate quantitative analyses. We found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAF mutation (odds ratio = 203). Sporadic cases of mismatch repair deficiency occur almost exclusively as a consequence of CIMP-associated methylation of MLH1 . We propose a robust new marker panel to classify CIMP+ tumors.
Publication
Journal: Nucleic Acids Research
June/27/2002
Abstract
We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.
Publication
Journal: Nature Genetics
February/24/1999
Abstract
The discovery of numerous hypermethylated promoters of tumour-suppressor genes, along with a better understanding of gene-silencing mechanisms, has moved DNA methylation from obscurity to recognition as an alternative mechanism of tumour-suppressor inactivation in cancer. Epigenetic events can also facilitate genetic damage, as illustrated by the increased mutagenicity of 5-methylcytosine and the silencing of the MLH1 mismatch repair gene by DNA methylation in colorectal tumours. We review here current mechanistic understanding of the role of DNA methylation in malignant transformation, and suggest Knudson's two-hit hypothesis should now be expanded to include epigenetic mechanisms of gene inactivation.
Publication
Journal: Nature Genetics
February/9/1999
Abstract
Densely methylated DNA associates with transcriptionally repressive chromatin characterized by the presence of underacetylated histones. Recently, these two epigenetic processes have been dynamically linked. The methyl-CpG-binding protein MeCP2 appears to reside in a complex with histone deacetylase activity. MeCP2 can mediate formation of transcriptionally repressive chromatin on methylated promoter templates in vitro, and this process can be reversed by trichostatin A (TSA), a specific inhibitor of histone deacetylase. Little is known, however, about the relative roles of methylation and histone deacetylase activity in the stable inhibition of transcription on densely methylated endogenous promoters, such as those for silenced alleles of imprinted genes, genes on the female inactive X chromosome and tumour-suppressor genes inactivated in cancer cells. We show here that the hypermethylated genes MLH1, TIMP3 (TIMP3), CDKN2B (INK4B, p15) and CDKN2A (INK4, p16) cannot be transcriptionally reactivated with TSA alone in tumour cells in which we have shown that TSA alone can upregulate the expression of non-methylated genes. Following minimal demethylation and slight gene reactivation in the presence of low dose 5-aza-2'deoxycytidine (5Aza-dC), however, TSA treatment results in robust re-expression of each gene. TSA does not contribute to demethylation of the genes, and none of the treatments alter the chromatin structure associated with the hypermethylated promoters. Thus, although DNA methylation and histone deacetylation appear to act as synergistic layers for the silencing of genes in cancer, dense CpG island methylation is dominant for the stable maintenance of a silent state at these loci.
Publication
Journal: Gastroenterology
May/5/2010
Abstract
Microsatellite instability (MSI) is a hypermutable phenotype caused by the loss of DNA mismatch repair activity. MSI is detected in about 15% of all colorectal cancers; 3% are of these are associated with Lynch syndrome and the other 12% are caused by sporadic, acquired hypermethylation of the promoter of the MLH1 gene, which occurs in tumors with the CpG island methylator phenotype. Colorectal tumors with MSI have distinctive features, including a tendency to arise in the proximal colon, lymphocytic infiltrate, and a poorly differentiated, mucinous or signet ring appearance. They have a slightly better prognosis than colorectal tumors without MSI and do not have the same response to chemotherapeutics. Discovery of MSI in colorectal tumors has increased awareness of the diversity of colorectal cancers and implications for specialized management of patients.
Publication
Journal: Nucleic Acids Research
April/9/2000
Abstract
Cytosine-5 DNA methylation occurs in the context of CpG dinucleotides in vertebrates. Aberrant methylation of CpG islands in human tumors has been shown to cause transcriptional silencing of tumor-suppressor genes. Most methods used to analyze cytosine-5 methylation patterns require cumbersome manual techniques that employ gel electrophoresis, restriction enzyme digestion, radiolabeled dNTPs or hybridization probes. The development of high-throughput technology for the analysis of DNA methylation would significantly expand our ability to derive molecular information from clinical specimens. This study describes a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (TaqMan) technology that requires no further manipulations after the PCR step. MethyLight is a highly sensitive assay, capable of detecting methylated alleles in the presence of a 10,000-fold excess of unmethylated alleles. The assay is also highly quantitative and can very accurately determine the relative prevalence of a particular pattern of DNA methylation. We show that MethyLight can distinguish between mono-allelic and bi-allelic methylation of the MLH1 mismatch repair gene in human colorectal tumor specimens. The development of this technique should considerably enhance our ability to rapidly and accurately generate epigenetic profiles of tumor samples.
Publication
Journal: Nature
May/4/1994
Abstract
The human DNA mismatch repair gene homologue hMSH2, on chromosome 2p is involved in hereditary non-polyposis colon cancer (HNPCC). On the basis of linkage data, a second HNPCC locus was assigned to chromosome 3p21-23 (ref. 3). Here we report that a human gene encoding a protein, hMLH1 (human MutL homologue), homologous to the bacterial DNA mismatch repair protein MutL, is located on human chromosome 3p21.3-23. We propose that hMLH1 is the HNPCC gene located on 3p because of the similarity of the hMLH1 gene product to the yeast DNA mismatch repair protein, MLH1, the coincident location of the hMLH1 gene and the HNPCC locus on chromosome 3, and hMLH1 missense mutations in affected individuals from a chromosome 3-linked HNPCC family.
Publication
Journal: Genes and Development
May/30/2000
Abstract
We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50-MRE11-NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50-MRE11-NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage. Several of these proteins also have roles in DNA replication-associated repair. Collectively, these results suggest that BRCA1 may function as a coordinator of multiple activities required for maintenance of genomic integrity during the process of DNA replication and point to a central role for BRCA1 in DNA repair.
Publication
Journal: New England Journal of Medicine
May/9/2005
Abstract
BACKGROUND
Germ-line mutations in the mismatch-repair genes MLH1, MSH2, MSH6, and PMS2 lead to the development of the Lynch syndrome (hereditary nonpolyposis colorectal cancer), conferring a strong susceptibility to cancer. We assessed the frequency of such mutations in patients with colorectal cancer and examined strategies for molecular screening to identify patients with the syndrome.
METHODS
Patients with a new diagnosis of colorectal adenocarcinoma at the major hospitals in metropolitan Columbus, Ohio, were eligible for the study. Genotyping of the tumor for microsatellite instability was the primary screening method. Among patients whose screening results were positive for microsatellite instability, we searched for germ-line mutations in the MLH1, MSH2, MSH6, and PMS2 genes with the use of immunohistochemical staining for mismatch-repair proteins, genomic sequencing, and deletion studies. Family members of carriers of the mutations were counseled, and those found to be at risk were offered mutation testing.
RESULTS
Of 1066 patients enrolled in the study, 208 (19.5 percent) had microsatellite instability, and 23 of these patients had a mutation causing the Lynch syndrome (2.2 percent). Among the 23 probands with the Lynch syndrome, 10 were more than 50 years of age and 5 did not meet the Amsterdam criteria or the Bethesda guidelines for the diagnosis of hereditary nonpolyposis colorectal cancer (including the use of age and family history to identify patients at high risk for the Lynch syndrome). Genotyping for microsatellite instability alone and immunohistochemical analysis alone each failed to identify two probands. In the families of 21 of the probands, 117 persons at risk were tested, and of these, 52 had Lynch syndrome mutations and 65 did not.
CONCLUSIONS
Routine molecular screening of patients with colorectal adenocarcinoma for the Lynch syndrome identified mutations in patients and their family members that otherwise would not have been detected. These data suggest that the effectiveness of screening with immunohistochemical analysis of the mismatch-repair proteins would be similar to that of the more complex strategy of genotyping for microsatellite instability.
Publication
Journal: Gut
January/15/2009
Abstract
BACKGROUND
The CpG island methylator phenotype (CIMP), characterised by widespread promoter methylation, is associated with microsatellite instability (MSI) and BRAF mutation in colorectal cancer. The independent effect of CIMP, MSI and BRAF mutation on prognosis remains uncertain.
METHODS
Utilising 649 colon cancers (stage I-IV) in two independent cohort studies, we quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) as well as CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, and WRN by using MethyLight technology. We examined MSI, KRAS and BRAF status. Cox proportional hazard models computed hazard ratios (HRs) for colon cancer-specific and overall mortalities, adjusting for patient characteristics and tumoral molecular features.
RESULTS
After adjustment for other predictors of patient survival, patients with CIMP-high cancers (126 (19%) tumours with>>or=6/8 methylated CIMP-specific promoters) experienced a significantly low colon cancer-specific mortality (multivariate HR 0.44, 95% confidence interval (CI) 0.22 to 0.88), whereas the BRAF mutation was significantly associated with a high cancer-specific mortality (multivariate HR 1.97, 95% CI 1.13 to 3.42). A trend toward a low cancer-specific mortality was observed for MSI-high tumours (multivariate HR 0.70, 95% CI 0.36 to 1.37). In stratified analyses, CIMP-high tumours were associated with a significant reduction in colon cancer-specific mortality, regardless of both MSI and BRAF status. The relation between CIMP-high and lower mortality appeared to be consistent across all stages. KRAS mutation was unrelated to prognostic significance.
CONCLUSIONS
CIMP-high appears to be an independent predictor of a low colon cancer-specific mortality, while BRAF mutation is associated with a high colon cancer-specific mortality.
Publication
Journal: Nature
October/11/1993
Abstract
The genomes of all eukaryotes contain tracts of DNA in which a single base or a small number of bases is repeated. Expansions of such tracts have been associated with several human disorders including the fragile X syndrome. In addition, simple repeats are unstable in certain forms of colorectal cancer, suggesting a defect in DNA replication or repair. We show here that mutations in any three yeast genes involved in DNA mismatch repair (PMS1, MLH1 and MSH2) lead to 100- to 700-fold increases in tract instability, whereas mutations that eliminate the proof-reading function of DNA polymerases have little effect. The meiotic stability of the tracts is similar to the mitotic stability. These results suggest that tract instability is associated with DNA polymerases slipping during replication, and that some types of colorectal cancer may reflect mutations in genes involved in DNA mismatch repair.
Publication
Journal: New England Journal of Medicine
May/20/1998
Abstract
BACKGROUND
Genetic disorders that predispose people to colorectal cancer include the polyposis syndromes and hereditary nonpolyposis colorectal cancer. In contrast to the polyposis syndromes, hereditary nonpolyposis colorectal cancer lacks distinctive clinical features. However, a germ-line mutation of DNA mismatch-repair genes is a characteristic molecular feature of the disease. Since clinical screening of carriers of such mutations can help prevent cancer, it is important to devise strategies applicable to molecular screening for this disease.
METHODS
We prospectively screened tumor specimens obtained from 509 consecutive patients with colorectal adenocarcinomas for DNA replication errors, which are characteristic of hereditary colorectal cancers. These replication errors were detected through microsatellite-marker analyses of tumor DNA. DNA from normal tissue from the patients with replication errors was screened for germ-line mutations of the mismatch-repair genes MLH1 and MSH2.
RESULTS
Among the 509 patients, 63 (12 percent) had replication errors. Specimens of normal tissue from 10 of these 63 patients had a germ-line mutation of MLH1 or MSH2. Of these 10 patients (2 percent of the 509 patients), 9 had a first-degree relative with endometrial or colorectal cancer, 7 were under 50 years of age, and 4 had had colorectal or endometrial cancer previously.
CONCLUSIONS
In this series of patients with colorectal cancer in Finland, at least 2 percent had hereditary nonpolyposis colorectal cancer. We recommend testing for replication errors in all patients with colorectal cancer who meet one or more of the following criteria: a family history of colorectal or endometrial cancer, an age of less than 50 years, and a history of multiple colorectal or endometrial cancers. Patients found to have replication errors should undergo further analysis for germ-line mutations in DNA mismatch-repair genes.
Publication
Journal: Nature Genetics
August/11/1996
Abstract
Mice that are deficient in either the Pms2 or Msh2 DNA mismatch repair genes have microsatellite instability and a predisposition to tumours. Interestingly, Pms2-deficient males display sterility associated with abnormal chromosome pairing in meiosis. Here mice deficient in another mismatch repair gene, Mlh1, possess not only microsatellite instability but are also infertile (both males and females). Mlh1-deficient spermatocytes exhibit high levels of prematurely separated chromosomes and arrest in first division meiosis. We also show that Mlh1 appears to localize to sites of crossing over on meiotic chromosomes. Together these findings suggest that Mlh1 is involved in DNA mismatch repair and meiotic crossing over.
Publication
Journal: Current Opinion in Genetics and Development
April/13/1999
Abstract
Eukaryotic mismatch repair (MMR) has been shown to require two different heterodimeric complexes of MutS-related proteins: MSH2-MSH3 and MSH2-MSH6. These two complexes have different mispair recognition properties and different abilities to support MMR. Alternative models have been proposed for how these MSH complexes function in MMR. Two different heterodimeric complexes of MutL-related proteins, MLH1-PMS1 (human PMS2) and MLH1-MLH3 (human PMS1) also function in MMR and appear to interact with other MMR proteins including the MSH complexes and replication factors. A number of other proteins have been implicated in MMR, including DNA polymerase delta, RPA (replication protein A), PCNA (proliferating cell nuclear antigen), RFC (replication factor C), Exonuclease 1, FEN1 (RAD27) and the DNA polymerase delta and epsilon associated exonucleases. MMR proteins have also been shown to function in other types of repair and recombination that appear distinct from MMR. MMR proteins function in these processes in conjunction with components of nucleotide excision repair (NER) and, possibly, recombination.
Publication
Journal: Cell
September/5/2006
Abstract
Half of hereditary nonpolyposis colon cancer kindreds harbor mutations that inactivate MutLalpha (MLH1*PMS2 heterodimer). MutLalpha is required for mismatch repair, but its function in this process is unclear. We show that human MutLalpha is a latent endonuclease that is activated in a mismatch-, MutSalpha-, RFC-, PCNA-, and ATP-dependent manner. Incision of a nicked mismatch-containing DNA heteroduplex by this four-protein system is strongly biased to the nicked strand. A mismatch-containing DNA segment spanned by two strand breaks is removed by the 5'-to-3' activity of MutSalpha-activated exonuclease I. The probable endonuclease active site has been localized to a PMS2 DQHA(X)(2)E(X)(4)E motif. This motif is conserved in eukaryotic PMS2 homologs and in MutL proteins from a number of bacterial species but is lacking in MutL proteins from bacteria that rely on d(GATC) methylation for strand discrimination in mismatch repair. Therefore, the mode of excision initiation may differ in these organisms.
Publication
Journal: Genome Research
June/12/2012
Abstract
Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation-based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAF(V600E) mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing.
Publication
Journal: Clinical Genetics
October/6/2009
Abstract
More than one million patients will manifest colorectal cancer (CRC) this year of which, conservatively, approximately 3% (approximately 30,700 cases) will have Lynch syndrome (LS), the most common hereditary CRC predisposing syndrome. Each case belongs to a family with clinical needs that require genetic counseling, DNA testing for mismatch repair genes (most frequently MLH1 or MSH2) and screening for CRC. Colonoscopy is mandated, given CRC's proximal occurrence (70-80% proximal to the splenic flexure). Due to its early age of onset (average 45 years of age), colonoscopy needs to start by age 25, and because of its accelerated carcinogenesis, it should be repeated every 1 to 2 years through age 40 and then annually thereafter. Should CRC occur, subtotal colectomy may be necessary, given the marked frequency of synchronous and metachronous CRC. Because 40-60% of female patients will manifest endometrial cancer, tailored management is essential. Additional extracolonic cancers include ovary, stomach, small bowel, pancreas, hepatobiliary tract, upper uroepithelial tract, brain (Turcot variant) and sebaceous adenomas/carcinomas (Muir-Torre variant). LS explains only 10-25% of familial CRC.
Publication
Journal: Journal of Clinical Oncology
December/23/2009
Abstract
OBJECTIVE
Activating mutation of the KRAS oncogene is an established predictive biomarker for resistance to anti-epidermal growth factor receptor (anti-EGFR) therapies in advanced colorectal cancer (aCRC). We wanted to determine whether KRAS and/or BRAF mutation is also a predictive biomarker for other aCRC therapies.
METHODS
The Medical Research Council Fluorouracil, Oxaliplatin and Irinotecan: Use and Sequencing (MRC FOCUS) trial compared treatment sequences including first-line fluorouracil (FU), FU/irinotecan or FU/oxaliplatin in aCRC. Tumor blocks were obtained from 711 consenting patients. DNA was extracted and KRAS codons 12, 13, and 61 and BRAF codon 600 were assessed by pyrosequencing. Mutation (mut) status was assessed first as a prognostic factor and then as a predictive biomarker for the benefit of adding irinotecan or oxaliplatin to FU. The association of BRAF-mut with loss of MLH1 was assessed by immunohistochemistry.
RESULTS
Three hundred eight (43.3%) of 711 patients had KRAS-mut and 56 (7.9%) of 711 had BRAF-mut. Mutation of KRAS, BRAF, or both was present in 360 (50.6%) of 711 patients. Mutation in either KRAS or BRAF was a poor prognostic factor for overall survival (OS; hazard ratio [HR], 1.40; 95% CI, 1.20 to 1.65; P < .0001) but had minimal impact on progression-free survival (PFS; HR, 1.16; 95% CI, 1.00 to 1.36; P = .05). Mutation status did not affect the impact of irinotecan or oxaliplatin on PFS or OS. BRAF-mut was weakly associated with loss of MLH1 staining (P = .012).
CONCLUSIONS
KRAS/BRAF mutation is associated with poor prognosis but is not a predictive biomarker for irinotecan or oxaliplatin. There is no evidence that patients with KRAS/BRAF mutated tumors are less likely to benefit from these standard chemotherapy agents.
Publication
Journal: Cell
November/24/1996
Abstract
A two-hybrid system was used to screen yeast and human expression libraries for proteins that interact with mismatch repair proteins. PCNA was recovered from both libraries and shown in the case of yeast to interact with both MLH1 and MSH2. A yeast strain containing a mutation in the PCNA gene had a strongly elevated mutation rate in a dinucleotide repeat, and the rate was not further elevated in a strain also containing a mutation in MLH1. Mismatch repair activity was examined in human cell extracts using an assay that does not require DNA repair synthesis. Activity was inhibited by p21WAF1 or a p21 peptide, both of which bind to PCNA, and activity was restored to inhibited reactions by addition of PCNA. The data suggest a PCNA requirement in mismatch repair at a step preceding DNA resynthesis. The ability of PCNA to bind to MLH1 and MSH2 may reflect linkage between mismatch repair and replication and may be relevant to the roles of mismatch repair proteins in other DNA transactions.
Publication