Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Endocrinology
May/10/2004
Abstract
The purpose of this study was to examine the source of adipokines released by the visceral and sc adipose tissues of obese humans. Human adipose tissue incubated in primary culture for 48 h released more prostaglandin E(2), IL-8, and IL-6 than adiponectin, whereas the release of plasminogen activator inhibitor 1 and hepatocyte growth factor was less than that of adiponectin but greater than that of leptin. IL-10 and TNFalpha were released in amounts less than those of leptin, whereas vascular endothelial growth factor and IL1-beta were released in much lower amounts. The accumulation of adipokines was also examined in the three fractions (adipose tissue matrix, isolated stromovascular cells, and adipocytes) obtained by collagenase digestion of adipose tissue. Over 90% of the adipokine release by adipose tissue, except for adiponectin and leptin, could be attributed to nonfat cells. Visceral adipose tissue released greater amounts of vascular endothelial growth factor, IL-6, and plasminogen activator inhibitor 1 compared with abdominal sc tissue. The greatly enhanced total release of TNFalpha, IL-8, and IL-10 by adipose tissue from individuals with a body mass index of 45 compared with 32 was due to nonfat cells. Furthermore, most of the adipokine release by the nonfat cells of adipose tissue was due to cells retained in the tissue matrix after collagenase digestion.
Publication
Journal: Langmuir
May/3/2007
Abstract
Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.
Publication
Journal: New England Journal of Medicine
August/11/2014
Abstract
The study of autoinflammatory diseases has uncovered mechanisms underlying cytokine dysregulation and inflammation.
We analyzed the DNA of an index patient with early-onset systemic inflammation, cutaneous vasculopathy, and pulmonary inflammation. We sequenced a candidate gene, TMEM173, encoding the stimulator of interferon genes (STING), in this patient and in five unrelated children with similar clinical phenotypes. Four children were evaluated clinically and immunologically. With the STING ligand cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), we stimulated peripheral-blood mononuclear cells and fibroblasts from patients and controls, as well as commercially obtained endothelial cells, and then assayed transcription of IFNB1, the gene encoding interferon-β, in the stimulated cells. We analyzed IFNB1 reporter levels in HEK293T cells cotransfected with mutant or nonmutant STING constructs. Mutant STING leads to increased phosphorylation of signal transducer and activator of transcription 1 (STAT1), so we tested the effect of Janus kinase (JAK) inhibitors on STAT1 phosphorylation in lymphocytes from the affected children and controls.
We identified three mutations in exon 5 of TMEM173 in the six patients. Elevated transcription of IFNB1 and other gene targets of STING in peripheral-blood mononuclear cells from the patients indicated constitutive activation of the pathway that cannot be further up-regulated with stimulation. On stimulation with cGAMP, fibroblasts from the patients showed increased transcription of IFNB1 but not of the genes encoding interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis factor (TNF). HEK293T cells transfected with mutant constructs show elevated IFNB1 reporter levels. STING is expressed in endothelial cells, and exposure of these cells to cGAMP resulted in endothelial activation and apoptosis. Constitutive up-regulation of phosphorylated STAT1 in patients' lymphocytes was reduced by JAK inhibitors.
STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disease caused by gain-of-function mutations in TMEM173. (Funded by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases; ClinicalTrials.gov number, NCT00059748.).
Publication
Journal: Journal of Immunology
March/31/1986
Abstract
A murine monoclonal antibody (H4/18) raised against cultured human endothelial cells (HEC) prestimulated by the monokine interleukin 1 (IL 1) recognizes a cell surface molecule inducible by IL 1 or by the distinct monokine tumor necrosis factor (TNF) in primary or serially passaged HEC. H4/18 binding is not basally expressed or inducible by IL 1 in an SV-40 transformed HEC line, in human dermal fibroblasts, or in blood leukocytes. Expression of this molecule by HEC in response to IL 1 can be blocked by protein and RNA synthesis inhibitors but not by cyclooxygenase inhibitors. In addition, H4/18 can immunoprecipitate two biosynthetically labeled polypeptides (Mr 100,000 and 120,000) from HEC stimulated with IL 1 but not from control HEC. Thus, the H4/18 binding site appears to be an inducible surface protein specific for HEC. The majority of HEC in a culture can be induced to express the H4/18 binding protein, but expression is transient (peak 4 to 6 hr) and over the next 24 hr declines to near basal levels either in the continued presence of or upon removal of IL 1. The magnitude of the peak response depends upon IL 1 concentration (peak 5 to 10 U/ml), and the response is optimized by the continued presence of IL 1 during the initial 4- to 6-hr induction period. The time of peak H4/18 binding does not appear to be a function of IL 1 concentration. The decline of H4/18 binding from peak levels is prevented by cycloheximide, a protein synthesis inhibitor. HEC maintained in the presence of IL 1 for 24 hr become refractory to restimulation by IL 1; however, IL 1-stimulated cells rested in the absence of IL 1 for 20 hr can be stimulated by fresh IL 1. HEC expression of the H4/18 binding protein is not induced by interleukin 2 or by interferon-alpha, -beta, or -gamma. Induction of H4/18 binding by TNF is also concentration dependent, transient, and dependent upon protein and RNA synthesis. Several observations suggest that IL1 and TNF act independently on HEC. Our TNF is a recombinant protein, expressed from a cloned cDNA and thus free of IL 1 contamination; it also has no activity in a highly sensitive IL 1 assay. Our standard IL 1 preparation is affinity purified and lacks TNF activity on L929 cells. Thus, our monokine preparations are not cross-contaminated. Most interestingly, HEC incubated with IL 1 and refractory to IL1 restimulation can be restimulated by TNF to express H4/18 binding and vice versa.(ABSTRACT TRUNCATED AT 400 WORDS)
Publication
Journal: Journal of Neuroscience
June/6/2001
Abstract
Reactive microglia associated with the beta-amyloid plaques in Alzheimer's disease (AD) brains initiate a sequence of inflammatory events integral to the disease process. We have observed that fibrillar beta-amyloid peptides activate a tyrosine kinase-based signaling response in primary mouse microglia and the human monocytic cell line, THP-1, resulting in production of neurotoxic secretory products, proinflammatory cytokines, and reactive oxygen species. We report that most of the amyloid-induced tyrosine kinase activity was stimulated after activation of Src family members such as Lyn. However, transduction of the signaling response required for increased production of the cytokines TNFalpha and IL1-beta was mediated by the nonreceptor tyrosine kinase, Syk. Additionally, beta-amyloid stimulated an NFkappaB-dependent pathway in parallel that was required for cytokine production. Importantly, TNFalpha generated by the monocytes and microglia was responsible for the majority of the neuorotoxic activity secreted by these cells after beta-amyloid stimulation but must act in concert with other factors elaborated by microglia to elicit neuronal death. Moreover, we observed that the neuronal loss was apoptotic in nature and involved increased neuronal expression of inducible nitric oxide synthase and subsequent peroxynitrite production. Selective inhibitors of inducible nitric oxide synthase effectively protected cells from toxicity associated with the microglial and monocytic secretory products. This study demonstrates a functional linkage between beta-amyloid-dependent activation of microglia and several characteristic markers of neuronal death occurring in Alzheimer's disease brains.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Gut
September/5/1989
Abstract
IL1-beta production by mononuclear cells isolated from normal and active inflammatory bowel disease mucosa was studied. Significantly more IL1-beta was produced spontaneously by mononuclear cells from the inflamed mucosa compared with those from normal colonic mucosa (median 190 pg/ml (range 45-700) v 20 pg/ml (0-165)). Stimulation with lipopolysaccharide enhanced IL1-beta production by mononuclear cells from active inflammatory bowel disease mucosa but not those from normal mucosa. Depleting the mononuclear cells of macrophages, by panning with monoclonal antibody 3C10, reduced the amount of IL1-beta produced. Enhanced IL1-beta production from the inflamed mucosa may play an important role in the mediation of many inflammatory responses. The enhanced production appears to be the result of a recruited population of cells.
Publication
Journal: Current Pharmaceutical Design
January/28/2009
Abstract
Interleukin-1 beta (IL1) and tumor necrosis factor alpha (TNF) promote non-rapid eye movement sleep under physiological and inflammatory conditions. Additional cytokines are also likely involved but evidence is insufficient to conclude that they are sleep regulatory substances. Many of the symptoms induced by sleep loss, e.g. sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, can be elicited by injection of exogenous IL1 or TNF. We propose that ATP, released during neurotransmission, acting via purine P2 receptors on glia releases IL1 and TNF. This mechanism may provide the means by which the brain keeps track of prior usage history. IL1 and TNF in turn act on neurons to change their intrinsic properties and thereby change input-output properties (i.e. state shift) of the local network involved. Direct evidence indicates that cortical columns oscillate between states, one of which shares properties with organism sleep. We conclude that sleep is a local use-dependent process influenced by cytokines and their effector molecules such as nitric oxide, prostaglandins and adenosine.
Publication
Journal: Diabetes
September/16/2004
Abstract
Acute and chronic hyperglycemia are proinflammatory states, but the status of proinflammatory cytokines and markers of oxidative stress and cardiovascular risks is not known in hyperglycemic crises of diabetic ketoacidosis (DKA) and nonketotic hyperglycemia (NKH). We studied 20 lean and 28 obese patients with DKA, 10 patients with NKH, and 12 lean and 12 obese nondiabetic control subjects. We measured 1) proinflammatory cytokines (tumor necrosis factor-alpha, interleukin [IL]-6, IL1-beta, and IL-8), 2) markers of cardiovascular risk (C-reactive protein [CRP], homocysteine, and plasminogen activator inhibitor-1 [PAI-1]), 3) products of reactive oxygen species (ROS; thiobarbituric acid [TBA]-reacting material, and dichlorofluorescein [DCF]), and 4) cortisol, growth hormone (GH), and free fatty acids (FFAs) on admission (before insulin therapy) and after insulin therapy and resolution of hyperglycemia and/or ketoacidosis. Results were compared with lean and obese control subjects. Circulating levels of cytokines, TBA, DCF, PAI-1, FFAs, cortisol, and GH on admission were significantly increased two- to fourfold in patients with hyperglycemic crises compared with control subjects, and they returned to normal levels after insulin treatment and resolution of hyperglycemic crises. Changes in CRP and homocysteine in response to insulin therapy did not reach control levels after resolution of hyperglycemia. We conclude that DKA and NKH are associated with elevation of proinflammatory cytokines, ROS, and cardiovascular risk factors in the absence of obvious infection or cardiovascular pathology. Return of these values to normal levels with insulin therapy demonstrates a robust anti-inflammatory effect of insulin.
Publication
Journal: Brain
May/21/2003
Abstract
Mouse models of the GM2 gangliosidoses [Tay-Sachs, late onset Tay-Sachs (LOTS), Sandhoff] and GM1 gangliosidosis have been studied to determine whether there is a common neuro-inflammatory component to these disorders. During the disease course, we have: (i) examined the expression of a number of inflammatory markers in the CNS, including MHC class II, CD68, CD11b (CR3), 7/4, F4/80, nitrotyrosine, CD4 and CD8; (ii) profiled cytokine production [tumour necrosis factor alpha (TNF alpha), transforming growth factor (TGF beta 1) and interleukin 1 beta (IL1 beta)]; and (iii) studied blood-brain barrier (BBB) integrity. The kinetics of apoptosis and the expression of Fas and TNF-R1 were also assessed. In all symptomatic mouse models, a progressive increase in local microglial activation/expansion and infiltration of inflammatory cells was noted. Altered BBB permeability was evident in Sandhoff and GM1 mice, but absent in LOTS mice. Progressive CNS inflammation coincided with the onset of clinical signs in these mouse models. Substrate reduction therapy in the Sandhoff mouse model slowed the rate of accumulation of glycosphingolipids in the CNS, thus delaying the onset of the inflammatory process and disease pathogenesis. These data suggest that inflammation may play an important role in the pathogenesis of the gangliosidoses.
Publication
Journal: Molecular Cell
September/11/2007
Abstract
NF-kappaB is a key mediator of inflammation. Here, we mapped the genome-wide loci bound by the RELA subunit of NF-kappaB in lipopolysaccharide (LPS)-stimulated human monocytic cells, and together with global gene expression profiling, found an overrepresentation of the E2F1-binding motif among RELA-bound loci associated with NF-kappaB target genes. Knockdown of endogenous E2F1 impaired the LPS inducibility of the proinflammatory cytokines CCL3(MIP-1alpha), IL23A(p19), TNF-alpha, and IL1-beta. Upon LPS stimulation, E2F1 is rapidly recruited to the promoters of these genes along with p50/RELA heterodimer via a mechanism that is dependent on NF-kappaB activation. Together with the observation that E2F1 physically interacts with p50/RELA in LPS-stimulated cells, our findings suggest that NF-kappaB recruits E2F1 to fully activate the transcription of NF-kappaB target genes. Global gene expression profiling subsequently revealed a spectrum of NF-kappaB target genes that are positively regulated by E2F1, further demonstrating the critical role of E2F1 in the Toll-like receptor 4 pathway.
Publication
Journal: Brain Pathology
April/14/2004
Abstract
The neuropathological correlates of encephalopathy and autonomic dysfunction in septic shock are unclear. We performed post mortem analysis of 5 brain areas susceptible to ischemia and 5 autonomic nuclei (AN) in 23 patients who had died in our intensive care unit (ICU) from septic shock and 8 dying from non-septic shock as well as 5 controls who had died suddenly from extracranial injury. Proinflammatory cytokine (IL1-beta and TNF-alpha) and inducible nitric oxide synthase (iNOS) expression was assessed by immunocytochemistry. Abnormalities in septic shock were: hemorrhages (26%), hypercoagulability syndrome (9%), micro-abscesses (9%), multifocal necrotizing leukoencephalopathy (9%) and ischemia (100%). The incidence of cerebral hemorrhage or hypercoagulability syndrome was not related to clotting disturbances. The intensity of ischemia within susceptible areas was the same in both ICU groups, but more pronounced in the autonomic centers of septic patients (P < 0.0001). Neuronal apoptosis assessed using anti-caspase 3 immunocytochemistry and in situ end labeling was more pronounced in the autonomic nuclei of septic patients. (P < 0.0001). TNF-alpha expression did not differ between groups but vascular iNOS expression assessed by immunocytochemistry was higher in sepsis (P<0.0001) and correlated with autonomic center neuronal apoptosis (P < 0.02). We conclude that septic shock is associated with diffuse cerebral damage and specific autonomic neuronal apoptosis which may be due to circulating factors particularly iNOS.
Publication
Journal: Journal of Molecular Medicine
June/22/2015
Abstract
NLR inflammasomes, caspase 1 activation platforms critical for processing key pro-inflammatory cytokines, have been implicated in the development of nonalcoholic fatty liver disease (NAFLD). As the direct role of the NLRP3 inflammasome remains unclear, we tested effects of persistent NLRP3 activation as a contributor to NAFLD development and, in particular, as a modulator of progression from benign hepatic steatosis to steatohepatitis during diet-induced NAFLD. Gain of function tamoxifen-inducible Nlrp3 knock-in mice allowing for in vivo temporal control of NLRP3 activation and loss of function Nlrp3 knockout mice were placed on short-term choline-deficient amino acid-defined (CDAA) diet, to induce isolated hepatic steatosis or long-term CDAA exposure, to induce severe steatohepatitis and fibrosis, respectively. Expression of NLRP3 associated proteins was assessed in liver biopsies of a well-characterized group of patients with the full spectrum of NAFLD. Nlrp3(-/-) mice were protected from long-term feeding CDAA-induced hepatomegaly, liver injury, and infiltration of activated macrophages. More importantly, Nlrp3(-/-) mice showed marked protection from CDAA-induced liver fibrosis. After 4 weeks on CDAA diet, wild-type (WT) animals showed isolated hepatic steatosis while Nlrp3 knock-in mice showed severe liver inflammation, with increased infiltration of activated macrophages and early signs of liver fibrosis. In the liver samples of patients with NAFLD, inflammasome components were significantly increased in those patients with nonalcoholic steatohepatitis (NASH) when compared to those with non-NASH NAFLD with mRNA levels of pro-IL1 beta correlated to levels of COL1A1. Our study uncovers a crucial role for the NLRP3 inflammasome in the development of NAFLD. These findings may lead to novel therapeutic strategies aimed at halting the progression of hepatic steatosis to the more severe forms of this disease. Key message: Mice with NLRP3 inflammasome loss of function are protected from diet-induced steatohepatitis. NLRP3 inflammasome gain of function leads to early and severe onset of diet-induced steatohepatitis in mice. Patients with severe NAFLD exhibit increased levels of NLRP3 inflammasome components and levels of pro-IL1β mRNA correlate with the expression of COL1A1.
Publication
Journal: Neuropharmacology
March/27/1995
Abstract
Recent studies have suggested that glia might play a more active role in synaptic function than previously thought. Therefore, the present studies have evaluated the potential role of spinal cord glia in acute nociceptive processing and in the thermal and mechanical hyperalgesia produced by peripheral injury. In the present experiments, we found that: (1) selective inhibition of glia metabolism with intrathecal (i.t.) administration of fluorocitrate (1 nmol) results in a marked, but reversible, attenuation of the persistent thermal and mechanical hyperalgesia produced by intraplantar zymosan (5 mg); (2) selective inhibition of the inducible form of nitric oxide synthase (iNOS) with i.t. aminoguanidine (1 pmol-1 nmol) resulted in a dose-dependent inhibition of the persistent thermal, but not mechanical hyperalgesia produced by intraplantar zymosan (5 mg); (3) i.t. coadministration of interleukin 1 beta (IL1 beta; 10 ng) and interferon gamma (IFN; 1000 U) resulted in expression of the message for iNOS 8 hr after administration assessed using reverse-transcription polymerase chain reaction (RT-PCR) and Southern blot analysis; and (4) i.t. administration of lipopolysaccharide (LPS; 150 micrograms) produced a time-dependent thermal hyperalgesia compared with saline treated-rats (15 microliters). There was no change in mechanical withdrawal thresholds over time following any treatment, except fluorocitrate. We have previously shown that NO plays a significant role in mechanisms of hyperalgesia. In the present experiments we have extended these observations and have now shown a role for iNOS, expressed by glia, in mechanisms of hyperalgesia. These results suggest an unexplored avenue for the development of potential new and novel therapies for pain control.
Publication
Journal: Journal of Cellular Physiology
April/26/1995
Abstract
Signals transmitted from mesenchyme to epithelia or vice versa constitute the basis of reciprocal epithelial-mesenchymal interactions. As a first step toward understanding epithelial-mesenchymal interactions on the ocular surface where the transit amplifying cell-containing corneal epithelium is anatomically separated from the stem cell-containing limbal epithelium, we sought to characterize the expression patterns of cytokines and their receptors by primary epithelial and early-passaged fibroblast cultures of human cornea and limbus. Northern hybridization with oligonucleotide and cDNA probes to a total of 25 cytokines and 12 of their receptors revealed that the positively expressed cytokines could be divided into the following four patterns. Type I: TGF-alpha, IL-1 beta, and PDGF-B were expressed exclusively by epithelial cells but their respective receptors EGFR and IL-1R were predominantly and PDGFR-beta was exclusively expressed by fibroblasts. Type II: IGF-I, TGF-beta 1, -beta 2, LIF, and bFGF, and their receptors were expressed by both epithelial cells and fibroblasts. FGFR-1 (flg) and FGFR-2 (bek) were expressed more by fibroblasts and bFGF was expressed more by corneal than limbal epithelial cells. Type III: keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF) were expressed exclusively by fibroblasts and their respective receptors, KGFR and c-met, were predominantly expressed by epithelial cells. Combined with RT-PCR, the quantity of KGF and KGFR transcripts was highest in limbal fibroblasts and epithelial cells, respectively. In contrast, the quantity of HGF and HGFR (c-met) transcripts was highest in corneal fibroblasts and epithelial cells, respectively. Type IV: M-CSF and IL-8 were expressed by fibroblasts and/or epithelial cells but their receptors were not expressed by epithelial cells nor fibroblasts, but by immune or inflammatory cells. In addition to these potential paracrine actions, autocrine actions mediated by TGF-alpha/EGFR, IL-1 beta/IL1-R, and bFGF/FGFR-1 were more expressed by corneal than limbal epithelial cells. Immunofluorescence staining on human corneoscleral cryosections confirmed that EGFR and bFGF were not expressed by the limbal basal epithelium, but expressed strongly by the corneal epithelium, a pattern consistent with Northern hybridization. These results indicate that ocular surface epithelial cells and fibroblasts can express a myriad of cytokines, among which the first three patterns constitute the network of potential epithelial-mesenchymal cytokine dialogues. The difference of certain cytokine expression between corneal and limbal regions suggests that this network participates in normal epithelial growth and differentiation, and plays an important role in wound healing.
Publication
Journal: Journal of Alzheimer's Disease
September/11/2012
Abstract
Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.
Publication
Journal: Cancer Research
July/26/2007
Abstract
Inflammatory responses to environmental exposures, such as tobacco smoke, may play a role in lung carcinogenesis. To test this hypothesis, we studied genetic polymorphisms in the inflammation pathway in relation to lung cancer risk. We evaluated a panel of 59 single nucleotide polymorphisms (SNP) in 37 inflammation-related genes among non-Hispanic Caucasian lung cancer cases (N=1,553) and controls (N=1,730) from Houston, Texas. Logistic regression was used to assess associations with lung cancer under a dominant genetic model adjusted for sex, age, and smoking. Haplotypes were estimated with the expectation-maximization algorithm. False-positive report probabilities (FPRP) were calculated for significant associations. Interleukin 1 beta (IL1B) C3954T was associated with lung cancer [odds ratio (OR), 1.27; 95% confidence interval (95% CI), 1.10-1.47; FPRP 0.148]. Two IL1A SNPs (C-889T and Ala(114)Ser) were also related to lung cancer (OR, 1.18-1.22), although FPRPs were higher. One IL1A-IL1B haplotype, containing only the IL1B 3954T allele, was associated with elevated lung cancer risk (OR, 1.80; 95% CI, 1.24-2.61). These associations were stronger in heavy smokers, particularly for IL1B C3954T (OR, 1.59; 95% CI, 1.28-1.97; FPRP 0.004). Lung cancer risk was unrelated to polymorphisms in IL1 receptor or antagonist genes. Associations with lung cancer were also seen for SNPs in granulocyte macrophage colony stimulating factor and peroxisome proliferator-activated factor-delta, but FPRPs were high. IL1A and IL1B polymorphisms are associated with increased lung cancer risk, especially among heavy smokers. IL1A and IL1B are critical signals in initiating inflammation. Our results suggest that a dysregulated inflammatory response to tobacco-induced lung damage promotes carcinogenesis.
Publication
Journal: European Journal of Immunology
October/24/1988
Abstract
Interleukin 6 (IL6) is the new definition of a group of cytokines previously named according to their biological activity, e.g. B cell stimulatory factor 2 (BSF-2), hybridoma plasmocytoma-growth factor (HGF), interferon-beta 2 (IFN-beta 2), hepatocyte stimulating factor (HSF). It has recently been suggested that IL6 may represent the major mediator of acute-phase protein response whereas IL1 beta and TNF-alpha could play a minor role. We compared the effect of the three cytokines on hepatic protein synthesis by performing in vitro as well as in vivo experiments. Human hepatoma cells (PLC/PRF5) were exposed to each cytokine separately for 20 h, and the effect was then studied at the protein and RNA level. All three cytokines reduced albumin and increased C3 and ceruloplasmin biosynthesis. The cytokines induced the same effect at the RNA level indicating that the modulation was pretranslational. The effect of the cytokines was specific since actin gene expression was not changed; furthermore the effect was blocked by specific antibodies against the cytokines. The effect of the single cytokines was dose and time dependent, and quantitatively comparable. None of the cytokines was able to alter alpha 1-anti-trypsin synthesis. In vivo experiments with mice showed that IL1 beta and TNF-alpha both induce serum amyloid A (SAA) mRNA in the mouse liver and increase factor B (Bf) gene expression. Human recombinant IL6 induced SAA gene expression and it also had a weak positive effect on Bf gene expression after i.p. injection. These data demonstrate that the three cytokines studied are quantitatively and qualitatively comparable, and that all three are probably involved in acute-phase protein response.
Publication
Journal: Journal of Immunology
June/8/1988
Abstract
To determine whether the production and secretion of TNF and IL-1 by human mononuclear phagocytes could be independently modulated, we examined secretion of TNF and IL-1 by fresh monocytes and monocytes pretreated with IFN-gamma or granulocyte macrophage CSF before LPS stimulation. TNF and IL-1 secretion were in part differentially modulated. Fresh monocytes secreted large amounts of TNF and IL-1 after LPS stimulation and less than 6% as much without LPS. The capacity to secrete TNF in response to LPS decreased slightly in cultured monocytes but was markedly augmented by IFN-gamma (approximately five-fold more than fresh monocytes). In contrast, cultured monocytes secreted less than 5% as much IL-1 as fresh monocytes and, although augmented by IFN-gamma, IL-1 secretion remained much less than by fresh monocytes. These differences in modulation were reflected by differences in the molecular mechanisms regulating TNF and IL-1 secretion. TNF secretion was regulated primarily by changes in the duration of increased transcription and by an apparent increase in translation or protein stability in response to LPS; greater than 95% TNF produced was secreted under all conditions. In contrast, the changes in IL-1 secretion reflected primarily post-transcriptional regulation of IL1-alpha mRNA, transcriptional and post-transcriptional regulation of IL-1 beta mRNA and a decrease in the fraction of IL-1 secreted by cultured compared with fresh monocytes (10 and 60%, respectively). Changes in translational efficiency or protein processing or stability appeared not to be important mechanisms regulating IL-1 secretion. Additional evidence that TNF and IL-1 can be differentially modulated was the selective decrease in TNF secretion and the failure of IFN-gamma to enhance TNF secretion by cultured monocytes from neonates, whereas results for IL-1 were similar with adult and neonatal monocytes. Results with tissue macrophages were similar to those with cultured monocytes. These results indicate that TNF and IL-1 production and secretion by mononuclear phagocytes can be differentially modulated, reflecting in part different mechanisms of regulation; this may allow them to play partially independent roles in the host immune response.
Publication
Journal: Bone Marrow Transplantation
March/23/2004
Abstract
We determined the safety, immune activating effects, and potential efficacy of i.v. infusion of ex vivo interleukin-2 (IL-2) activated natural killer (NK) cells (part I) or IL-2 boluses (part II) during daily s.c. IL-2 administration following hematopoietic recovery from autologous transplantation. In all, 57 patients with relapsed lymphoma (n=29) or metastatic breast cancer (n=28) were enrolled. In part I of the study, 34 patients were enrolled at three dose levels of ex vivo IL-2-activated NK cells. Lymphaphereses were performed on days 28 and 42 of s.c. IL-2 administration. Following overnight ex vivo IL-2 activation of the pheresis product, the cells were reinfused the following day. In part II, 23 patients were enrolled at three dose levels of supplemental i.v. IL-2 bolus infusions, given on days 28 and 35 during s.c. IL-2 administration. Toxicities were generally mild, and no patient required hospitalization. Lytic function was markedly enhanced for fresh peripheral blood mononuclear cells (PBMNCs) obtained 1 day postinfusion of either IL-2-activated cells or IL-2 boluses. IL-2 boluses transiently increased the levels of IL-6, IFN-gamma, TNF-alpha and IL1-beta, with increases in IL-6 and IFN-gamma being dose dependent. A total of 37 patients (19 patients with lymphoma, 18 with breast cancer) treated with an optimum dose of post-transplant immunotherapy (defined as having received 1.75 x 10(6) IU/m(2)/day of s.c. IL-2 plus at least one of the planned ex vivo IL-2-activated cell infusions/IL-2 boluses) could be matched with controls from the Autologous Blood and Marrow Transplant Registry database. The matched-pairs analysis demonstrated no improvement in disease outcomes of survival and relapse. We conclude that IL-2-activated cells/IL-2 boluses can be safely administered, generate PBMNCs with enhanced cytotoxicity against NK-resistant targets, and increase cytokine levels. With this dose and schedule of administration of IL-2, no improvement in patient disease outcomes was noted. Alternative strategies will be needed to exploit the immunotherapeutic potential of IL-2-activated NK cells.
Publication
Journal: Human Molecular Genetics
June/6/1993
Publication
Journal: BMC Immunology
July/11/2004
Abstract
BACKGROUND
Cytokine mRNA quantification is widely used to investigate cytokine profiles, particularly in small samples. Real-time polymerase chain reaction is currently the most reliable method of quantifying low-level transcripts such as cytokine and cytokine receptor mRNAs. This accurate technique allows the quantification of a larger pattern of cytokines than quantification at the protein level, which is limited to a smaller number of proteins.
RESULTS
Although fluorogenic probes are considered more sensitive than fluorescent dyes, we have developed SYBR Green real-time RT-PCR protocols to assay pro-inflammatory cytokines (IL1a, IL1b and IL6, TNFa), cytokine receptors (IL1-r1, IL1-r2, IL6-r, TNF-r2) and related molecules (IL1-RA, SOCS3) mRNA in rats. This method enables normalisation against several housekeeping genes (beta-actin, GAPDH, CypA, HPRT) dependent on the specific experimental treatments and tissues using either standard curve, or comparative CT quantification method. PCR efficiency and sensitivity allow the assessment of; i) basal mRNA levels in many tissues and even decreases in mRNA levels, ii) mRNA levels from very small samples.
CONCLUSIONS
Real-time RT-PCR is currently the best way to investigate cytokine networks. The investigations should be completed by the analysis of genes regulated by cytokines or involved in cytokine signalling, providing indirect information on cytokine protein expression.
Publication
Journal: GLIA
October/29/2009
Abstract
As the main effector-cell population of the central nervous system, microglia (MG) are considered to play an important immunoregulatory function in a number of pathological conditions such as inflammation, trauma, degenerative disease, and brain tumors. Recent studies, however, have suggested that the anti-neoplastic function of MG may be suppressed in malignant brain tumors. Considering the proposed suppressive role of signal transducers and activators of transcription 3 (Stat3) in antitumor immunity, we evaluated the role of Stat3 inhibition on MG and macrophage (MP) activation and tumor growth in a murine glioma model. N9 MG cells were exposed to GL261 glioma conditioned medium (GL261-CM) and evaluated for Stat3 activity and cytokine expression. Furthermore, the role of Stat3 inhibition on MG and MP activation was studied both in vitro and in vivo. Finally, the effect of Stat3 inhibition on tumor growth was assessed in intracranial GL261 gliomas. GL261-CM increased Stat3 activity in N9 cells in vitro and resulted in overexpression of IL-10 and IL-6, and downregulation of IL1-beta, a pro-inflammatory cytokine. Inhibition of Stat3 by CPA-7 or siRNA reversed glioma-induced cytokine expression profile in N9 cells. Furthermore, inactivation of Stat3 in intracranial GL261 tumors by siRNA resulted in MG/MP activation and tumor growth inhibition. Glioma-induced MG and MP suppression may be mediated thorough Stat3. Inhibition of Stat3 function in tumor MG/MP may result in their activation and can potentially be used as an adjunct immunotherapy approach for gliomas.
Publication
Journal: Immunology
November/5/1995
Abstract
Control of resistance to cyst burden following per-oral infection with Toxoplasma gondii has been mapped previously to a region of mouse chromosome 17 of approximately 140 kb. This region is contiguous with and contains the class I gene, Ld. Resistance to development of toxoplasmic encephalitis has also been reported to be controlled by genes in this region of H-2. TNF-alpha, D and L genes, as well as unidentified genes, are also in this region. The work described here was performed to identify definitively the gene(s) in this 140 kb region that confers resistance to cysts and encephalitis. The study demonstrates that relative resistance to T. gondii organisms and cyst burden in brain, and toxoplasmic encephalitis, 30 days following per-oral T. gondii infection is correlated absolutely with the presence of the Ld gene in inbred, recombinant, mutant and C3H.Ld transgenic mice. Mice with the Ld gene had lower cyst burdens and less encephalitis than those without the Ld gene. Specifically, 30 days after infection mice with the Ld gene had minimal perivascular inflammation and meningeal inflammation and very few Toxoplasma cysts or organisms in immunoperoxidase-stained preparations of their brains. Mice without the Ld gene had a similar pattern of inflammation, but in addition they had collections of inflammatory cells in the brain parenchyma. Free tachyzoites were found within these foci of inflammation and cysts were present in these areas as well as in contiguous areas without inflammatory cells. There were CD4+ and CD8+ T lymphocytes in the areas of inflammation and throughout the brain parenchyma. Mice that were resistant to cysts and encephalitis had little detectable brain cytokine mRNA expression, while mice that were susceptible had elevated levels of mRNA for a wide range of cytokines, consistent with their greater amounts of inflammation. The present work definitively demonstrates that a Ld-restricted response decreases the number of organisms and cysts within the brain and thereby limits toxoplasmic encephalitis and levels of interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), interleukin-2 (IL-2), IL-6, IL-10, transforming growth factor-beta (TGF-beta), IL-1 alpha, IL1 beta and macrophage inhibiting protein (MIP) mRNA in the brain 30 days after per-oral infection.
Publication
Journal: Journal of Clinical Investigation
October/12/1994
Abstract
Fas/APO-1 is a transmembrane protein of the nerve growth factor/TNF alpha receptor family which signals apoptotic cell death in susceptible target cells. We have investigated the susceptibility of seven human malignant glioma cell lines to Fas/APO-1-dependent apoptosis. Sensitivity to Fas/APO-1 antibody-mediated cell killing correlated with cell surface expression of Fas/APO-1. Expression of Fas/APO-1 as well as Fas/APO-1-dependent cytotoxicity were augmented by preexposure of human malignant glioma cells to IFN gamma and TNF alpha. Further, pretreatment with TGF <em>beta</em> 2, <em>IL1</em> and IL8 enhanced Fas/APO-1 antibody-induced glioma cell apoptosis whereas other cytokines including TNF <em>beta</em>, IL6, macrophage colony-stimulating factor, <em>IL1</em>0 and <em>IL1</em>3 had no such effect. None of the human malignant glioma cell lines was susceptible to TNF alpha-induced cytotoxicity. Fas/APO-1 antibody-sensitive glioma cell lines (n = 5), but not Fas/APO-1 antibody-resistant glioma cell lines (n = 2), became sensitive to TNF alpha when co-treated with inhibitors of RNA and protein synthesis. Resistance of human glioma cells to Fas/APO-1 antibody-mediated apoptosis was mainly related to low level expression of Fas/APO-1 and appeared not to be linked to overexpression of the anti-apoptotic protooncogene, bcl-2. Given the resistance of human malignant glioma to surgery, irradiation, chemotherapy and immunotherapy, we propose that Fas/APO-1 may be a promising target for a novel locoregionary approach to human malignant glioma. This strategy gains support from the demonstration of Fas/APO-1 expression in ex vivo human malignant glioma specimens and from the absence of Fas/APO-1 in normal human brain parenchyma.
load more...