operations &technical support
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(84)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Molecular Biology
April/12/2000
Abstract
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.
Publication
Journal: Oncogene
September/1/2004
Abstract
We searched for chromosome 3p homo- and hemizygous losses in 23 lung cancer cell lines, 53 renal cell and 22 breast carcinoma biopsies using 31 microsatellite markers located in frequently deleted 3p regions. In addition, two sequence-tagged site markers (NLJ-003 and NL3-001) located in the Alu-PCR clone 20 region (AP20) and lung cancer (LUCA) regions, respectively, were used for quantitative real-time PCR (QPCR). We found frequent (10-18%) homozygous deletions (HDs) in both 3p21.3 regions in the biopsies and lung cancer cell lines. In addition, we discovered that amplification of 3p is a very common (15-42.5%) event in these cancers and probably in other epithelial malignancies. QPCR showed that aberrations of either NLJ-003 or NL3-001 were detected in more than 90% of all studied cases. HDs were frequently detected simultaneously both in NLJ-003 or NL3-001 loci in the same tumour (P<3-10(-7)). This observation suggests that tumour suppressor genes (TSG) in these regions could have a synergistic effect. The exceptionally high frequency of chromosome aberrations in NLJ-003 and NL3-001 loci suggests that multiple TSG(s) involved in different malignancies are located very near to these markers. Precise mapping of 15 independent HDs in the LUCA region allowed us to establish the smallest HD region in 3p21.3C located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene). This region contains 17 genes. Mapping of 19 HDs in the AP20 region resulted in the localization of the minimal region to the interval flanked by D3S1298 and D3S3623 markers. Only four genes were discovered in this interval, namely, APRG1, ITGA9, HYA22 and VILL.
Publication
Journal: Journal of Molecular Biology
August/8/2001
Abstract
The lactose synthase (LS) enzyme is a 1:1 complex of a catalytic component, beta1,4-galactosyltransferse (beta4Gal-T1) and a regulatory component, alpha-lactalbumin (LA), a mammary gland-specific protein. LA promotes the binding of glucose (Glc) to beta4Gal-T1, thereby altering its sugar acceptor specificity from N-acetylglucosamine (GlcNAc) to glucose, which enables LS to synthesize lactose, the major carbohydrate component of milk. The crystal structures of LS bound with various substrates were solved at 2 A resolution. These structures reveal that upon substrate binding to beta4Gal-T1, a large conformational change occurs in the region comprising residues 345 to 365. This repositions His347 in such a way that it can participate in the coordination of a metal ion, and creates a sugar and LA-binding site. At the sugar-acceptor binding site, a hydrophobic N-acetyl group-binding pocket is found, formed by residues Arg359, Phe360 and Ile363. In the Glc-bound structure, this hydrophobic pocket is absent. For the binding of Glc to LS, a reorientation of the Arg359 side-chain occurs, which blocks the hydrophobic pocket and maximizes the interactions with the Glc molecule. Thus, the role of LA is to hold Glc by hydrogen bonding with the O-1 hydroxyl group in the acceptor-binding site on beta4Gal-T1, while the N-acetyl group-binding pocket in beta4Gal-T1 adjusts to maximize the interactions with the Glc molecule. This study provides details of a structural basis for the partially ordered kinetic mechanism proposed for lactose synthase.
Publication
Journal: Breast Cancer Research and Treatment
September/9/1999
Abstract
The expression, DNA binding, and transactivating activity of activator protein 1 (AP-1) was examined in a series of multidrug resistant (MDR) MCF-7 human breast cancer cells that have increasing levels of MDR1 gene expression. We observed an increase in the amount of both c-jun and c-fos mRNA in cells with 12-, 65-, or 200-fold higher resistance to adriamycin when compared to drug-sensitive MCF-7 wild type (WT) cells. Electrophoretic mobility shift assays (EMSA) demonstrated an increase in the DNA binding activity of an AP-1 complex in nuclear extracts from MDR MCF-7 cells when compared to extracts from WT cells. We observed a proportional increase in luciferase expression from a reporter vector containing consensus AP-1 binding sites in transiently transfected MDR cells when compared to WT cells, indicating that AP-1 mediated gene expression is increased in drug-resistant MCF-7 cells. Since the MDR1 promoter contains a putative AP-1 binding site, we used EMSA to examine AP-1 binding activity to an oligonucleotide probe that contained the relevant MDR1 promoter sequences (-123 to -108). Nuclear extracts from resistant MCF-7 cells displayed an increased level of DNA binding of Jun/Jun dimers to the probe, indicating that AP-1 was capable of binding to this promoter site. A luciferase reporter construct containing triplicate copies of the MDR1 promoter sequence was expressed at higher levels in transiently transfected MDR cells when compared to expression in WT cells. Co-transfection of WT cells with a c-jun expression vector and either of the AP-1 luciferase constructs demonstrated that c-jun could activate gene expression from both the consensus and the MDR1 AP-1 sites in a dose dependent manner. In addition, RT-PCR and western blot analysis showed that levels of MDR1 mRNA and Pgp were increased in c-jun transfected WT cells. Taken together, these data indicate that increased AP-1 activity may be an important mediator of MDR by regulating the expression of MDR1.
Publication
Journal: Journal of Immunology
January/5/2000
Abstract
Inactivation of genes encoding members of TNF and TNF receptor families reveal their divergent roles in the formation and function of secondary lymphoid organs. Most lymphotoxin alpha (ltalpha)- and all lymphotoxin beta receptor (ltbetar)-deficient mice are completely devoid of lymph nodes (LNs); however, most lymphotoxin beta (ltbeta)-deficient mice develop mesenteric LNs. Tnf- and tnfrp55-deficient mice develop a complete set of LNs, while ltbeta/tnfrp55 double-deficient mice lack all LNs, demonstrating cooperation between LTbeta and TNFRp55 in LN development. Now we report that ltbeta/tnf double-deficient mice develop the same set of mucosal LNs as do ltbeta-deficient mice, suggesting that ligands other than TNF signal through TNFRp55 during LN development. These LNs retain distinct T and B cells areas; however, they lack follicular dendritic cell networks. Structures resembling germinal centers can be found in the LNs from immunized ltbeta-deficient mice but not in ltbeta/tnf double-deficient mice. Additionally, stromal components of the spleen and LNs appear to be more severely disturbed in ltbeta/tnf double-deficient mice as compared with ltbeta-deficient mice. We conclude that LTbeta and TNF cooperate in the establishment of the correct microarchitecture of lymphoid organs.
Publication
Journal: Journal of Biological Chemistry
June/30/1999
Abstract
Analysis of CCR5 variants in human immunodeficiency virus, type 1 (HIV-1), high risk cohorts led to the identification of multiple single amino acid substitutions in the amino-terminal third of the HIV-1 co-receptor CCR5 suggesting the possibility of protective and permissive genotypes; unfortunately, the low frequency of these mutations did not led to correlation with function. Therefore, we used analytical methods to assess the functional and structural significance of six of these variant receptors in vitro. These studies showed three categories of effects on CCR5 function. 1) Mutations in the first extracellular domain of CCR5 severely reduce specific ligand binding and chemokine-induced chemotaxis. 2) An extracellular domain variant, A29S, when co-expressed with CD4, supported HIV-1 infection whereas the others do not. 3) The transmembrane region variants of CCR5 support monotropic HIV-1 infection that is blocked by addition of some receptor agonists. Mutations in the first and second transmembrane domains increase RANTES (regulated on activation normal T-cell expressed) binding affinity but did not affect MIP1beta binding affinity presumably based on differences in ligand-receptor interaction sites. Furthermore, the CCR5 transmembrane mutants do not respond to RANTES with the classical bell-shaped chemotactic response curve, suggesting that they are resistant to RANTES-induced desensitization. These data demonstrate that single amino acid changes in the extracellular domains of CCR5 can have profound effects on both HIV-1 co-receptor and specific ligand-induced functions, whereas mutations in the transmembrane domain only affect the response to chemokine ligands.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/3/2001
Abstract
Here we study the effect of point mutations in proteins on the redistributions of the conformational substates. We show that regardless of the location of a mutation in the protein structure and of its type, the observed movements of the backbone recur largely at the same positions in the structures. Despite the different interactions that are disrupted and formed by the residue substitution, not only are the conformations very similar, but the regions that move are also the same, regardless of their sequential or spatial distance from the mutation. This observation leads us to conclude that, apart from some extreme cases, the details of the interactions are not critically important in determining the protein conformation or in specifying which parts of the protein would be more prone to take on different local conformations in response to changes in the sequence. This finding further illustrates why proteins manifest a robustness toward many mutational events. This nonuniform distribution of the conformer population is consistently observed in a variety of protein structural types. Topology is critically important in determining folding pathways, kinetics, building block cutting, and anatomy trees. Here we show that topology is also very important in determining which regions of the protein structure will respond to sequence changes, regardless of the sequential or spatial location of the mutation.
Publication
Journal: Blood
March/14/2001
Abstract
LL2, an anti-CD22 monoclonal antibody against B-cell lymphoma, was covalently linked to the amphibian ribonuclease, onconase, a member of the pancreatic RNase A superfamily. LL2 increased in vitro potency (10 000-fold) and specificity against human Daudi Burkitt lymphoma cells while decreasing systemic toxicity of onconase. Monensin further increased potency of LL2-onconase on Daudi cells (IC(50), 20 and 1.5 pM, absence and presence of monensin, respectively). A 1-hour exposure to LL2-onconase was sufficient to kill Daudi cells in culture. These favorable in vitro properties translated to significant antitumor activity against disseminated Daudi lymphoma in mice with severe combined immunodeficiency disease. In mice inoculated with tumor cells intraperitoneally (ip), LL2-onconase (100 microg 5 times ip every day) increased the life span of animals with minimal disease 200%. The life span of mice with advanced disseminated Daudi lymphoma (tumor cells inoculated intravenously) was increased 135%. Mice injected with LL2-onconase tolerated a dose as high as 300 mg/kg. Because both onconase and LL2 are in clinical trials as cancer therapeutics, the covalently linked agents should be considered for treatment of non-Hodgkin lymphoma.
Publication
Journal: Protein engineering
December/27/2000
Abstract
We propose an intramolecular chaperone which catalyzes folding and neither dissociates nor is cleaved. This uncleaved foldase is an intramolecular chain-linked chaperone, which constitutes a critical building block of the structure. Macroscopically, all molecular chaperones facilitate folding reactions and manifest similar energy landscapes. However, microscopically they differ. While intermolecular chaperones catalyze folding by unfolding misfolded conformations or prevent misfolding, the chain-linked cleaved (proregion) and uncleaved intramolecular chaperone-like building blocks suggested here, catalyze folding by binding to, stabilizing and increasing the populations of native conformations of adjacent building block fragments. In both, the more stable the intramolecular chaperone fragment region, the faster is the folding rate. Hence, mechanistically, intramolecular chaperones and chaperone-like segments are similar. Both play a dual role, in folding and in protein function. However, while the functional role of the proregions is inhibitory, necessitating their cleavage, the function of the uncleaved intramolecular chaperone-like building blocks does not require their subsequent removal. On the contrary, it requires that they remain in the structure. This may lead to the difference in the type of control they are under: proteins folding with the assistance of the proregion have been shown to be under kinetic control. It has been suggested that kinetically controlled folding reactions, with the proregion catalyst removed, lend longevity under harsh conditions. On the other hand, proteins with uncleaved intramolecular chaperone-like building blocks, with their 'foldases' still attached, are largely under thermodynamic control, consistent with the control observed in most protein folding reactions. We propose that an uncleaved intramolecular chaperone-like fragment occurs frequently in proteins. We further propose that such proteins would be prone to changing conditions and in particular, to mutations in this critical building block region. We describe the features qualifying it for its proposed chaperone-like role, compare it with inter- and intramolecular chaperones and review current literature in this light. We further propose a mechanism showing how it lowers the barrier heights, leading to faster folding reaction rates. Since these fragments constitute an intergal part of the protein structure, we call these critical building blocks intramolecular, chaperone-like fragments, to clarify, distinguish and adhere to the definition of the transiently associating chaperones. The new mechanism presented here differs from the concept of 'folding nuclei'. While the concept of folding nuclei focuses on a non-sequential distribution of the folding information along the entire protein chain, the chaperone-like building block fragments proposition focuses on a segmental distribution of the folding information. This segmental distribution controls the distributions of the populations throughout the hierarchical folding processes.
Publication
Journal: Journal of Environmental Pathology, Toxicology and Oncology
September/13/2000
Abstract
Toxic doses of transition metals are capable of disturbing the natural oxidation/reduction balance in cells through various mechanisms stemming from their own complex redox reactions with endogenous oxidants and effects on cellular antioxidant systems. The resulting oxidative stress may damage redox-sensitive signaling molecules, such as NO, S-nitrosothiols, AP-1, NF-kappaB, IkappaB, p53, p21ras, and others, and thus derange the cell signaling and gene expression systems. This, in turn, may produce a variety of toxic effects, including carcinogenesis. Experimental support for the relevance of oxidative damage to the mechanisms of metal toxicity and carcinogenicity is particularly strong for two essential (but toxic when overdosed) metals--iron and copper-- and three well-established human metal carcinogens--nickel, chromium, and cadmium. However, along with more specific effects of toxic metals associated with their selective binding to particular cell constituents and affecting calcium signaling, oxidative damage seems to become important as well in explaining mechanisms of pathogenicity of other metals, such as lead, mercury, and arsenic.
Publication
Journal: Journal of Medicinal Chemistry
October/31/2007
Abstract
The biological activity of indenoisoquinoline topoisomerase I (Top1) inhibitors can be greatly enhanced depending on the choice of substituents on the aromatic rings and lactam side chain. Previously, it was discovered that a 3-nitro group and a 9-methoxy group afforded enhanced biological activity. In the present investigation, indenoisoquinoline analogues were systematically prepared using combinations of nitro groups, methoxy groups, and hydrogen atoms in an effort to understand the contribution of each group toward cytotoxicity and Top1 inhibition. Analysis of the biological results suggests that the nitro group is important for Top1 inhibition and the methoxy group improves cytotoxicity. In addition, previously identified structure-activity relationships were utilized to select favorable lactam side chain functionalities for incorporation on the aromatic skeleton of analogues in this study. As a result, this investigation has provided optimal Top1 inhibitors equipotent to camptothecin that demonstrate low nanomolar cytotoxicities toward cancer cells.
Publication
Journal: Journal of Medical Genetics
April/16/2003
Abstract
OBJECTIVE
Carbonic anhydrase enzymes (CAs) are universally involved in many fundamental physiological processes, including acid base regulation and fluid formation and movement. In glaucoma patients, CA inhibitors are very effective in lowering intraocular pressure by reducing the rate of aqueous humour secretion mediated by the CAs in the ciliary epithelium. In this work, we investigated the expression and tissue distribution of two recently discovered CA genes CA9 (CAIX) and CA12 (CAXII) in fetal, neonatal, and adult human eyes with and without glaucoma.
METHODS
CAIX and CAXII expression in 16 normal and 10 glaucomatous eyes, and in cultured non-pigmented ciliary epithelial cells (NPE) from normal and glaucoma eye donors was assessed by immunostaining. In addition, northern blot hybridisation was performed to assess expression of CA4, CA9, and CA12 mRNA in cultured NPE cells from normal and glaucoma donors.
RESULTS
CAXII was localised primarily to the NPE with its expression prominent during embryonic eye development but which decreased significantly in adults. CAIX expression in the NPE was very low. The epithelium of cornea and lens occasionally expressed both enzymes at low levels during development and in adult eye, and no expression was detected in the retina. The NPE from glaucoma eyes expressed higher levels of CAXII, but not CAIX, in comparison with normal eyes. This expression pattern was retained in cultured NPE cell lines. NPE cells from a glaucoma patient showed a five-fold increase in the CA12 mRNA level with no detectable expression of CA9 mRNA. Also, no expression of the CA4 gene encoding a GPI anchored plasma membrane protein was detected on these northern blots.
CONCLUSIONS
Transmembrane CAIX and CAXII enzymes are expressed in the ciliary cells and, thus, may be involved in aqueous humour production. CA12 may be a targeted gene in glaucoma.
Publication
Journal: Journal of Biological Chemistry
March/4/2002
Abstract
The respective development of either T helper type 1 (Th1) or Th2 cells is believed to be mediated by the effects of cytokines acting directly on Th precursors (Thp). We have generated evidence for an indirect monocyte-dependent immunoregulatory pathway. Recently, interleukin (IL) 4 has been shown to produce "new" potential peroxisome proliferator-activated receptor gamma (PPARgamma) ligands by inducing macrophage 12/15-lipoxygenase (12/15-LO). We have shown previously that the activated PPARgamma is a profound inhibitor of IL-2 transcription in human T lymphocytes. It is hypothetically possible that IL-4 might indirectly affect IL-2 production by Thp cells via macrophage-derived PPARgamma ligands. Using human monocytes and T lymphocytes from same donors, we have found that monocyte 12/15-LO products mediate the indirect inhibitory effect of IL-4 on anti-CD3- or phytohemagglutinin/phorbol 12-myristate 13-acetate-stimulated IL-2 production by T lymphocytes. We further analyzed which major 12/15-LO metabolites contributed to the above inhibition. 13-Hydroxyoctadecadienoic acid (13-HODE), a 12/15-LO product, markedly blocked IL-2 production by human blood T lymphocytes, but not Jurkat T cells. Moreover, the IL-4-conditioned macrophage medium contained a sufficient amount of 13-HODE and anti-13-HODE antibody indeed neutralized the inhibitory effects of the IL-4-conditional medium on T-cell IL-2 production. Using human T lymphocytes and the PPARgamma-transfected Jurkat T cells, we demonstrated the specific inhibition by 13-HODE of the transcription factors NFAT (nuclear factor of activated T cells) and nuclear factor kappaB, the IL-2 promoter reporter, and IL-2 production. However, 15-hydroxytetraenoic acid had little inhibitory effect. The potency of such inhibitory effects correlates well with the capability of the above metabolic lipids to activate PPARgamma. These data provide a mechanism whereby IL-4 may indirectly affect Thp function via PPARgamma activated by macrophage products of the 12/15-LO pathway.
Publication
Journal: Journal of Leukocyte Biology
July/25/2001
Abstract
Human phagocytic leukocytes express the seven-transmembrane G-protein-coupled receptors formyl peptide receptor (FPR) and FPR-like 1 (FPRL1). MMK-1, a synthetic peptide derived from a random peptide library, is reported to induce calcium mobilization specifically in human FPRL1 gene-transfected cells. However, its actions on human phagocytic leukocytes remain poorly defined. We found that MMK-1 is a potent chemotactic and calcium-mobilizing agonist for human monocytes, neutrophils, and FPRL1-transfected human embryonic kidney (HEK) 293 cells but is inactive in cells transfected with FPR. MMK-1 also activated HEK 293 cells transfected with FPR2, a mouse counterpart of human FPRL1. Furthermore, MMK-1 increased pertussis toxin-sensitive production of inflammatory cytokines in human monocytes. MMK-1 signaling in human phagocytes was completely desensitized by a well-defined FPRL1 agonist, suggesting that FPRL1 is likely a receptor that mediates the action of MMK-1 in primary cells. Since MMK-1 is one of the most potent FPRL1-specific agonists identified so far, it can serve as a modulator of the host defense and a useful agent for further studying the signaling and function of FPRL1.
Publication
Journal: Bioorganic and Medicinal Chemistry
April/17/2005
Abstract
The cytotoxic indenoisoquinolines are a novel class of noncamptothecin topoisomerase I inhibitors having certain features that compare favorably with the camptothecins. A new strategy was adopted to attach aminoalkenyl substituents at C-11 of the indenoisoquinoline ring system, which, according to molecular modeling, would orient the side chains toward the DNA minor groove. All of the newly synthesized compounds were more cytotoxic than the parent indenoisoquinoline NSC 314622. Despite an imperfect correlation between cytotoxicities and topoisomerase I inhibition results, the hypothetical structural model of the cleavage complex presented here provides a conceptual framework to explain the structure-activity relationships.
Publication
Journal: Journal of Immunology
September/18/2000
Abstract
The trafficking of immature and mature dendritic cells (DCs) to different anatomical sites in vivo is critical for fulfilling their roles in the induction of Ag-specific immune responses. Although this process is complex and regulated by many mediators, the capacity of DCs to migrate is predominantly dependent on the expression of particular chemotactic receptors on the surface of DCs that enable them to move along chemotactic gradients formed by the corresponding chemokines and/or classical chemoattractants. Here we show that immature DCs (iDCs) respond to both fMLP and C5a as determined by chemotaxis and Ca2+ mobilization, whereas mature DCs (mDCs) respond to C5a, but not fMLP. Additionally, iDCs express the receptors for both fMLP and C5a at mRNA and protein levels. Upon maturation of DCs, fMLP receptor expression is almost completely absent, whereas C5a receptor mRNA and protein expression is maintained. Concomitantly, mDCs migrate chemotactically and mobilize intracellular Ca2+ in response to C5a, but not fMLP. Thus the interaction between C5a and its receptor is likely involved in the regulation of trafficking of both iDCs and mDCs, whereas fMLP mobilizes only iDCs. The differential responsiveness to fMLP and C5a of iDCs and mDCs suggests that they play different roles in the initiation of immune responses.
Publication
Journal: Developments in biologicals
October/8/2002
Abstract
C-Cluster enteroviruses (C-CEVs), consisting of Coxsackie A viruses (C-CAV1, 11, 13, 15, 17, 18, 19, 20, 21, 22, 24, 24v) and polioviruses (PV1, 2, 3), have been grouped together in relation to their genomic sequences. On the basis of disease syndromes caused in humans, however, C-CAVs and PVs are vastly different: the former cause respiratory disease, just like the major receptor group rhinoviruses (magHRV), whereas PVs, on invasion of the CNS, can cause poliomyelitis. It is assumed that the difference in pathogenesis of C-CEVs is governed predominantly by cellular receptor specificity. C-CAVs use ICAM-1, just like magHRV, whereas PVs uniquely use CD155. Both ICAM-1 and CD155 are Ig-like molecules. Remarkably, based on a phylogenetic analysis of non-structural proteins, CAV 11, 13, 17 and 18 are interleaved with, rather than separated from, the three PV serotypes, e.g. PV1 is more closely related to CAV18 that to PV2. This observation suggests that PVs may have emerged from a pool of C-CAVs by evolving a unique receptor specificity. We have been studying virion structure, virion/receptor interactions, genetics, and the molecular biology of C-CEVs with the objective of identifying the molecular basis of phenotypic diversity of these viruses. Of particular interest is the prospect that C-CEVs can be genetically manipulated to switch their receptor affinity: from CD155 to ICAM-1 for PVs, or from ICAM-1 to CD155 for C-CAVs. We propose a hypothesis that in a world free of poliovirus and anti-poliovirus neutralizing antibodies C-CAVs would be given a greater chance to switch receptor specificity from ICAM-1 to CD155 and thus, to evolve gradually into a new polio-like virus.
Publication
Journal: Biology of Blood and Marrow Transplantation
July/4/2001
Abstract
CD40 stimulation, by either antibody or ligand, has been shown to inhibit the growth of a variety of neoplastic cells, both in vivo and in vitro. In this study, we assessed the effects of CD40 stimulation using a murine agonistic CD40 monoclonal antibody (MoAb) (FGK115) or a soluble recombinant murine CD40 ligand (srmCD40L) in both lethally irradiated and nonirradiated BALB/c mice. Toxicity after CD40 stimulation was not observed in nonirradiated animals receiving up to 100 microg of the agonist anti-CD40 MoAb. However, as little as 10 microg of the agonistic anti-CD40 MoAb induced acute toxicity resulting in 100% morbidity of lethally irradiated animals by 4 days after irradiation. Histological evaluation of animals receiving anti-CD40 MoAb revealed severe intestinal lesions with disruption of the villi, goblet cell depletion, and crypt hyperplasia of the small intestine, colon, and cecum. Delaying the administration of anti-CD40 MoAb or reducing the amount of irradiation given resulted in increased survival and less severe lesions. Analysis of serum cytokine levels in lethally irradiated mice receiving agonistic anti-CD40 showed a marked increase of interferon (IFN)-gamma. Lethally irradiated IFN-gamma knockout mice given the agonistic anti-CD40 MoAb demonstrated significant increases in survival and minimal gut lesions compared with wild-type mice receiving the same regimen, suggesting that IFN-gamma plays a major role in this toxic reaction. These results indicate that CD40 stimulation using agonistic antibodies following lethal irradiation leads to a fatal, cytokine-induced disease affecting the intestine.
Publication
Journal: Cytotherapy
January/21/2003
Abstract
BACKGROUND
There is growing interest in the use of dendritic cells (DCs) for treatment of malignancy and infectious disease. Our goal was to develop a clinical scale method to prepare autologous DCs for cancer clinical trials.
METHODS
PBMC were collected from normal donors or cancer patients by automated leukapheresis, purified by counterflow centrifugal elutriation and placed into culture in polystyrene flasks at 1 x 10(6) cells/mL for 5-7 days at 37 degrees C, with 5% CO(2), with IL-4 and GM-CSF. Conditions investigated included media formulation, supplementation with heat in activated allogeneic AB serum or autologous plasma and time to harvest (Day 5 or Day 7). DCs were evaluated for morphology, quantitative yield, viability, phenotype and function, including mixed leukocyte response and recall response to tetanus toxoid and influenza virus.
RESULTS
DCs with a typical immature phenotype (CD14-negative, CD1a-positive, mannose receptor-positive, CD80-positive, CD83-negative) were generated most consistently in RPMI 1640 supplemented with 10% allogeneic AB serum or 10% autologous plasma. Cell yield was higher at Day 5 than Day 7, without detectable differences in phenotype or function. In pediatric sarcoma patients, autologous DCs had enhanced function compared with monocytes from which they were generated. In this patient group, starting with 8.0 +/- 3.7 x 10(8) fresh or cryopreserved autologous monocytes, DC yield was 2.1 +/- 1.0 x 10(8) cells, or 29% of the starting monocyte number.
CONCLUSIONS
In the optimized clinical-scale method, purified peripheral monocytes are cultured for 5 days in flasks at 1 x 10(6) cells/mL in RPMI 1640, 10% allogeneic AB serum or autologous plasma, IL-4 and GM-CSF. This method avoids the use of FBS and results in immature DCs suitable for clinical trials.
Publication
Journal: Clinical Immunology
June/20/2001
Abstract
Chemokine receptors are subjected to heterologous desensitization by activation of formyl peptide receptors. We investigated the cross-talk between formyl peptide receptors and the chemokine receptor CCR5 in human monocyte-differentiated immature dendritic cells (iDC). Monocytes cultured with GM-CSF and IL-4 for 4 days exhibit markers characteristic of iDC and maintain the expression of both formyl peptide receptors FPR and FPRL1, as well as CCR5. Pretreatment of iDC with W peptide (WKYMVm), a potent agonist for FPR and FPRL1 but with preference for FPRL1, resulted in down-regulation of CCR5 from the cell surface and reduced cell response to the CCR5 ligands through a PKC-dependent pathway. Furthermore, W peptide induced a PKC-dependent phosphorylation of CCR5 and inhibited infection of iDC by R5 HIV-1. Our results indicate that the expression and functions of CCR5 in iDC can be attenuated by W peptide, which activates formyl peptide receptors, and suggest an approach to the design of novel anti-HIV-1 agents.
Publication
Journal: Journal of Biological Chemistry
January/31/2001
Abstract
2-Chloroacetyl-2-demethylthiocolchicine (2CTC) and 3-chloroacetyl-3-demethylthiocolchicine (3CTC) resemble colchicine in binding to tubulin and react covalently with beta-tubulin, forming adducts with cysteine residues 239 and 354. The adducts at Cys-239 are less stable than those at Cys-354 during formic acid digestion. Extrapolating to zero time, the Cys-239 to Cys-354 adduct ratio is 77:23 for 2CTC and 27:73 for 3CTC. Using energy minimization modeling to dock colchicinoids into the electron crystallographic model of beta-tubulin in protofilaments (Nogales, E. , Wolf, S. G., and Downing, K. H. (1998) Nature 391, 199-203), we found two potential binding sites. At one, entirely encompassed within beta-tubulin, the C2- and C3-oxygen atoms of 2CTC and 3CTC overlapped poorly with those of colchicine and thiocolchicine, but distances from the reactive carbon atoms of the analogs to the sulfur atoms of the cysteine residues were qualitatively consistent with reactivity. The other potential binding site was located at the alpha/beta interface. Here, the oxygen atoms of the analogs overlapped well with those of colchicine, but relative distances of the reactive carbons to the cysteine sulfur atoms did not correlate with the observed reactivity. A significant conformational change must occur in the colchicine binding site of tubulin in the transition from the unpolymerized to the polymerized state.
Publication
Journal: Cytogenetics and cell genetics
August/8/2000
Abstract
We have mapped and characterized the human homolog of Drm/Gremlin (CKTFS1B1), a member of a family of BMP antagonists that have been linked to both developmental and transformation-related functions. By screening a human cDNA library, we isolated a 3.3-kb cDNA containing the 552-bp region encoding the human DRM protein. CKTFS1B1 was localized on human chromosome 15q13->> q15 by somatic cell hybrid analysis and, more precisely, using radiation hybrids, to a region of markers linked to SGNE1, secretory granule neuroendocrine protein 1 and RYR3, the ryanodyne receptor 3. Northern blot analysis showed the presence of a single DRM-specific mRNA expressed in different human tissues, including brain, ovary, intestine and colon. In the brain, DRM expression is associated with the region localized around the internal capsule in the large subcortical nuclei. DRM appears to be predominantly expressed in normal cells and tissues, including normal neurons, astrocytes and fibroblasts. Interestingly, we detected DRM expression in normal cells obtained from several patients, but not in tumor cell lines established from the same patients. The data suggest that down-regulation of DRM is associated with tumor progression, and support the hypothesis that human DRM may play an important role during both neuroembryological development and carcinogenesis.
Publication
Journal: Immunology Letters
February/7/2002
Abstract
Over the last two decades HIV-1 has spread worldwide and has now surpassed malaria as the leading cause of infectious disease mortality in adults (http://www.who.int/infectious-disease-report/pages/ch1text.html). The clinical course and outcome of HIV-1 infection are highly variable among individuals. Most individuals infected with HIV develop AIDS within 10 years. However about 1-5% remain relatively healthy for 15 years or more (long-term nonprogressors), while others progress to AIDS within the first 2-3 years after infection (rapid progressors). A small number of individuals are resistant to infection, while some individuals appear to eliminate the virus. Factors that influence susceptibility to infection and rate of disease progression are a combination of viral, host, and environmental determinants. With few exceptions, genetic resistance to infectious diseases is likely to involve a complex array of host genetic effects involving variants that have very subtle, but significant consequences on gene expression or protein function. We have gained considerable insight into the genetic effects on HIV-1 disease, yet we likely have uncovered only a fraction of the total picture. The greater our knowledge of various effects on HIV disease, the more likely we will be able to predict disease outcome on an individual-by-individual basis. While this may seem obvious, there is no standard practice of taking into account the genetic profile (i.e. genotypes at loci known to associate with rate of AIDS progression) of subjects used in functional studies of immune responsiveness to HIV-1. Here, we propose an approach for assessing overall genetic risk on an individual basis, and suggest that this information be considered when selecting comparison groups in studies of immune responses to HIV and/or in the interpretation of data derived from such studies.
Publication
Journal: Genes and Immunity
February/7/2001
Abstract
The markedly high levels of polymorphism present in classical class I loci of the human major histocompatibility complex have been implicated in infectious and immune disease recognition. The large numbers of alleles present at these loci have, however, limited efforts to verify associations between individual alleles and specific diseases. As an approach to reduce allele diversity to hierarchical evolutionarily related groups, we performed phylogenetic analyses of available HLA-A, B and C allele complete sequences (n = 216 alleles) using different approaches (maximum parsimony, distance-based minimum evolution and maximum likelihood). Full nucleotide and amino acid sequences were considered as well as abridged sequences from the hypervariable peptide binding region, known to interact in vivo, with HLA presented foreign peptide. The consensus analyses revealed robust clusters of 36 HLA-C alleles concordant for full and PBR sequence analyses. HLA-A alleles (n = 60) assorted into 12 groups based on full nucleotide and amino acid sequence which with few exceptions recapitulated serological groupings, however the patterns were largely discordant with clusters prescribed by PBR sequences. HLA-B which has the most alleles (n = 120) and which unlike HLA-A and -C is thought to be subject to frequent recombinational exchange, showed limited phylogenetic structure consistent with recent selection driven retention of maximum heterozygosity and population diversity. Those allele categories recognized offer an explicit phylogenetic criterion for grouping alleles potentially relevant for epidemiologic associations, for inferring the origin of MHC genome organization, and for comparing functional constraints in peptide presentation of HLA alleles.
load more...