vegfa - vascular endothelial growth factor A
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(6K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Molecular and cellular biology
September/25/1996
Abstract
Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells.
Publication
Journal: Science (New York, N.Y.)
January/10/1990
Abstract
Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.
Publication
Journal: Nature
May/2/1996
Abstract
The endothelial cell-specific vascular endothelial growth factor (VEGF) and its cellular receptors Flt-1 and Flk-1 have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis and the impaired vessel formation in Flk-1 and Flt-1 deficient embryos. However, because Flt-1 also binds placental growth factor, a VEGF homologue, the precise role of VEGF was unknown. Here we report that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES) and even more impaired in homozygous VEGF-deficient (VEGF-/-) T-ES embryos, resulting in death at mid-gestation. Similar phenotypes were observed in F1-VEGF+/- embryos, generated by germline transmission. We believe that this heterozygous lethal phenotype, which differs from the homozygous lethality in VEGF-receptor-deficient embryos, is unprecedented for a targeted autosomal gene inactivation, and is indicative of a tight dose-dependent regulation of embryonic vessel development by VEGF.
Publication
Journal: Nature genetics
May/21/2008
Abstract
Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
Publication
Journal: Cancer cell
March/24/2009
Abstract
Multiple angiogenesis inhibitors have been therapeutically validated in preclinical cancer models, and several in clinical trials. Here we report that angiogenesis inhibitors targeting the VEGF pathway demonstrate antitumor effects in mouse models of pancreatic neuroendocrine carcinoma and glioblastoma but concomitantly elicit tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased lymphatic and distant metastasis. Increased invasiveness is also seen by genetic ablation of the Vegf-A gene in both models, substantiating the results of the pharmacological inhibitors. The realization that potent angiogenesis inhibition can alter the natural history of tumors by increasing invasion and metastasis warrants clinical investigation, as the prospect has important implications for the development of enduring antiangiogenic therapies.
Publication
Journal: Nature reviews. Molecular cell biology
June/1/2006
Abstract
Vascular endothelial growth-factor receptors (VEGFRs) regulate the cardiovascular system. VEGFR1 is required for the recruitment of haematopoietic precursors and migration of monocytes and macrophages, whereas VEGFR2 and VEGFR3 are essential for the functions of vascular endothelial and lymphendothelial cells, respectively. Recent insights have shed light onto VEGFR signal transduction and the interplay between different VEGFRs and VEGF co-receptors in development, adult physiology and disease.
Publication
Journal: Nature
May/2/1996
Abstract
Angiogenesis is required for a wide variety of physiological and pathological processes. The endothelial cell-specific mitogen vascular endothelial growth factor (VEGF) is a major mediator of pathological angiogenesis. Also, the expression of VEGF and its two receptors, Flt-1 and Flk-1/KDR, is related to the formation of blood vessels in mouse and rat embryos. Mice homozygous for mutations that inactivate either receptor die in utero between days 8.5 and 9.5. However, ligand(s) other than VEGF might activate such receptors. To assess the role of VEGF directly, we disrupted the VEGF gene in embryonic stem cells. Here we report the unexpected finding that loss of a single VEGF allele is lethal in the mouse embryo between days 11 and 12. Angiogenesis and blood-island formation were impaired, resulting in several developmental anomalies. Furthermore, VEGF-null embryonic stem cells exhibit a dramatically reduced ability to form tumours in nude mice.
Publication
Journal: The Journal of cell biology
August/13/2003
Abstract
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.
Publication
Journal: Cell
April/12/1998
Abstract
Vascular endothelial growth factor (VEGF), a major regulator of angiogenesis, binds to two receptor tyrosine kinases, KDR/Flk-1 and Flt-1. We now describe the purification and the expression cloning from tumor cells of a third VEGF receptor, one that binds VEGF165 but not VEGF121. This isoform-specific VEGF receptor (VEGF165R) is identical to human neuropilin-1, a receptor for the collapsin/semaphorin family that mediates neuronal cell guidance. When coexpressed in cells with KDR, neuropilin-1 enhances the binding of VEGF165 to KDR and VEGF165-mediated chemotaxis. Conversely, inhibition of VEGF165 binding to neuropilin-1 inhibits its binding to KDR and its mitogenic activity for endothelial cells. We propose that neuropilin-1 is a novel VEGF receptor that modulates VEGF binding to KDR and subsequent bioactivity and therefore may regulate VEGF-induced angiogenesis.
Publication
Journal: Nature
August/23/2011
Abstract
Macrophages, which are abundant in the tumour microenvironment, enhance malignancy. At metastatic sites, a distinct population of metastasis-associated macrophages promotes the extravasation, seeding and persistent growth of tumour cells. Here we define the origin of these macrophages by showing that Gr1-positive inflammatory monocytes are preferentially recruited to pulmonary metastases but not to primary mammary tumours in mice. This process also occurs for human inflammatory monocytes in pulmonary metastases of human breast cancer cells. The recruitment of these inflammatory monocytes, which express CCR2 (the receptor for chemokine CCL2), as well as the subsequent recruitment of metastasis-associated macrophages and their interaction with metastasizing tumour cells, is dependent on CCL2 synthesized by both the tumour and the stroma. Inhibition of CCL2-CCR2 signalling blocks the recruitment of inflammatory monocytes, inhibits metastasis in vivo and prolongs the survival of tumour-bearing mice. Depletion of tumour-cell-derived CCL2 also inhibits metastatic seeding. Inflammatory monocytes promote the extravasation of tumour cells in a process that requires monocyte-derived vascular endothelial growth factor. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer. Our data provide the mechanistic link between these two clinical associations and indicate new therapeutic targets for treating metastatic breast cancer.
Publication
Journal: Nature genetics
January/7/2014
Abstract
Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.
Publication
Journal: Cell
May/1/2003
Abstract
Granulocytes and monocytes/macrophages of the myeloid lineage are the chief cellular agents of innate immunity. Here, we have examined the inflammatory response in mice with conditional knockouts of the hypoxia responsive transcription factor HIF-1alpha, its negative regulator VHL, and a known downstream target, VEGF. We find that activation of HIF-1alpha is essential for myeloid cell infiltration and activation in vivo through a mechanism independent of VEGF. Loss of VHL leads to a large increase in acute inflammatory responses. Our results show that HIF-1alpha is essential for the regulation of glycolytic capacity in myeloid cells: when HIF-1alpha is absent, the cellular ATP pool is drastically reduced. The metabolic defect results in profound impairment of myeloid cell aggregation, motility, invasiveness, and bacterial killing. This role for HIF-1alpha demonstrates its direct regulation of survival and function in the inflammatory microenvironment.
Publication
Journal: Molecular cell
September/18/2006
Abstract
Acetylation of proteins on lysine residues is a dynamic posttranslational modification that is known to play a key role in regulating transcription and other DNA-dependent nuclear processes. However, the extent of this modification in diverse cellular proteins remains largely unknown, presenting a major bottleneck for lysine-acetylation biology. Here we report the first proteomic survey of this modification, identifying 388 acetylation sites in 195 proteins among proteins derived from HeLa cells and mouse liver mitochondria. In addition to regulators of chromatin-based cellular processes, nonnuclear localized proteins with diverse functions were identified. Most strikingly, acetyllysine was found in more than 20% of mitochondrial proteins, including many longevity regulators and metabolism enzymes. Our study reveals previously unappreciated roles for lysine acetylation in the regulation of diverse cellular pathways outside of the nucleus. The combined data sets offer a rich source for further characterization of the contribution of this modification to cellular physiology and human diseases.
Publication
Journal: Biochemical and biophysical research communications
July/23/1989
Abstract
A growth factor for vascular endothelial cells was identified in the media conditioned by bovine pituitary follicular cells and purified to homogeneity by a combination of ammonium sulfate precipitation, heparin-sepharose affinity chromatography and two reversed phase HPLC steps. The growth factor was a cationic, heat stable and relatively acid stable protein and had a molecular weight, as assessed by silver-stained SDS-PAGE gel, of approximately 45,000 under non reducing conditions and approximately 23,000 under reducing conditions. The purified growth factor had a maximal mitogenic effect on adrenal cortex-derived capillary endothelial cells at the concentration of 1-1.2 ng/ml (22-26 pM). Further characterization of the bioactivity of the growth factor reveals that it exerts mitogenic effects also on vascular endothelial cells isolated from several districts but not on adrenal cortex cells, lens epithelial cells, corneal endothelial cells, keratynocytes or BHK-21 fibroblasts, indicating that its target cells specificity is unlike that of any previously characterized growth factor. Microsequencing reveals a unique N-terminal amino acid sequence. On the basis of its apparent target cell selectivity, we propose to name this factor vascular endothelial growth factor (VEGF).
Publication
Journal: Nature genetics
November/15/2010
Abstract
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Publication
Journal: The Journal of biological chemistry
July/23/1991
Abstract
Vascular endothelial growth factor (VEGF) is an apparently endothelial cell-specific mitogen that is structurally related to platelet-derived growth factor. By Northern blot and protein analyses, we show that VEGF is produced by cultured vascular smooth muscle cells. Analysis of VEGF transcripts in these cells by polymerase chain reaction and cDNA cloning revealed three different forms of the VEGF coding region, as had been reported in HL60 cells. The three forms of the human VEGF protein chain predicted from these coding regions are 189, 165, and 121 amino acids in length. Comparison of cDNA nucleotide sequences with sequences derived from human VEGF genomic clones indicates that the VEGF gene is split among eight exons and that the various VEGF coding region forms arise from this gene by alternative splicing: the 165-amino-acid form of the protein is missing the residues encoded by exon 6, whereas the 121-amino-acid form is missing the residues encoded by exons 6 and 7. Analysis of the VEGF gene promoter region revealed a single major transcription start, which lies near a cluster of potential Sp1 factor binding sites. The promoter region also contains several potential binding sites for the transcription factors AP-1 and AP-2; consistent with the presence of these sites, Northern blot analysis demonstrated that the level of VEGF transcripts is elevated in cultured vascular smooth muscle cells after treatment with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/26/2002
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic protein with neurotrophic and neuroprotective effects. Because VEGF promotes the proliferation of vascular endothelial cells, we examined the possibility that it also stimulates the proliferation of neuronal precursors in murine cerebral cortical cultures and in adult rat brain in vivo. VEGF (>10 ng/ml) stimulated 5-bromo-2'-deoxyuridine (BrdUrd) incorporation into cells that expressed immature neuronal marker proteins and increased cell number in cultures by 20-30%. Cultured cells labeled by BrdUrd expressed VEGFR2/Flk-1, but not VEGFR1/Flt-1 receptors, and the effect of VEGF was blocked by the VEGFR2/Flk-1 receptor tyrosine kinase inhibitor SU1498. Intracerebroventricular administration of VEGF into rat brain increased BrdUrd labeling of cells in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), where VEGFR2/Flk-1 was colocalized with the immature neuronal marker, doublecortin (Dcx). The increase in BrdUrd labeling after the administration of VEGF was caused by an increase in cell proliferation, rather than a decrease in cell death, because VEGF did not reduce caspase-3 cleavage in SVZ or SGZ. Cells labeled with BrdUrd after VEGF treatment in vivo include immature and mature neurons, astroglia, and endothelial cells. These findings implicate the angiogenesis factor VEGF in neurogenesis as well.
Publication
Journal: Oncogene
May/9/2002
Abstract
Non-receptor and receptor tyrosine kinases, such as Src and EGF receptor (EGFR), are major inducers of vascular endothelial growth factor (VEGF), one of the most potent mediators of angiogenesis. While tyrosine kinases signal through multiple pathways, signal transducer and activation of transcription 3 (Stat3) is a point of convergence for many of these and is constitutively activated with high frequency in a wide range of cancer cells. Here, we show that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines. An activated Stat3 mutant (Stat3C) up-regulates VEGF expression and stimulates tumor angiogenesis. Stat3C-induced VEGF up-regulation is abrogated when a Stat3-binding site in the VEGF promoter is mutated. Furthermore, interrupting Stat3 signaling with dominant-negative Stat3 protein or Stat3 antisense oligonucleotide in tumor cells down-regulates VEGF expression. Consistent with an important role of Stat3 in VEGF up-regulation induced by various oncogenic tyrosine kinases, v-Src-mediated VEGF expression is inhibited when Stat3 signaling is blocked. Moreover, chromatin immunoprecipitation assays indicate that Stat3 protein binds to the VEGF promoter in vivo and mutation of a Stat3-binding site in the VEGF promoter abrogates v-Src-induced VEGF promoter activity. These studies provide evidence that the VEGF gene is regulated directly by Stat3 protein, and indicate that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.
Publication
Journal: Science (New York, N.Y.)
January/10/1990
Abstract
Vascular permeability factor (VPF) is a 40-kilodalton disulfide-linked dimeric glycoprotein that is active in increasing blood vessel permeability, endothelial cell growth, and angiogenesis. These properties suggest that the expression of VPF by tumor cells could contribute to the increased neovascularization and vessel permeability that are associated with tumor vasculature. The cDNA sequence of VPF from human U937 cells was shown to code for a 189-amino acid polypeptide that is similar in structure to the B chain of platelet-derived growth factor (PDGF-B) and other PDGF-B-related proteins. The overall identity with PDGF-B is 18%. However, all eight of the cysteines in PDGF-B were found to be conserved in human VPF, an indication that the folding of the two proteins is probably similar. Clusters of basic amino acids in the COOH-terminal halves of human VPF and PDGF-B are also prevalent. Thus, VPF appears to be related to the PDGF/v-sis family of proteins.
Publication
Journal: Science (New York, N.Y.)
April/15/1992
Abstract
The fms-like tyrosine kinase (Flt) is a transmembrane receptor in the tyrosine kinase family. Expression of flt complementary DNA in COS cells conferred specific, high-affinity binding of vascular endothelial growth factor, also known as vascular permeability factor (VEGF-VPF), a factor that induces vascular permeability when injected in the guinea pig skin and stimulates endothelial cell proliferation. Expression of Flt in Xenopus laevis oocytes caused the oocytes to release calcium in response to VEGF-VPF. These findings show that flt encodes a receptor for VEGF-VPF.
Publication
Journal: Science (New York, N.Y.)
January/10/2000
Abstract
Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) are endothelial cell-specific growth factors. Direct comparison of transgenic mice overexpressing these factors in the skin revealed that the VEGF-induced blood vessels were leaky, whereas those induced by Ang1 were nonleaky. Moreover, vessels in Ang1-overexpressing mice were resistant to leaks caused by inflammatory agents. Coexpression of Ang1 and VEGF had an additive effect on angiogenesis but resulted in leakage-resistant vessels typical of Ang1. Ang1 therefore may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated VEGF and, in combination with VEGF, for promoting growth of nonleaky vessels.
Publication
Journal: Cell
August/12/1999
Abstract
Vascular endothelial cadherin, VE-cadherin, mediates adhesion between endothelial cells and may affect vascular morphogenesis via intracellular signaling, but the nature of these signals remains unknown. Here, targeted inactivation (VEC-/-) or truncation of the beta-catenin-binding cytosolic domain (VECdeltaC/deltaC) of the VE-cadherin gene was found not to affect assembly of endothelial cells in vascular plexi, but to impair their subsequent remodeling and maturation, causing lethality at 9.5 days of gestation. Deficiency or truncation of VE-cadherin induced endothelial apoptosis and abolished transmission of the endothelial survival signal by VEGF-A to Akt kinase and Bcl2 via reduced complex formation with VEGF receptor-2, beta-catenin, and phosphoinositide 3 (PI3)-kinase. Thus, VE-cadherin/ beta-catenin signaling controls endothelial survival.
Publication
Journal: Nature
March/30/2008
Abstract
Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.
Publication
Journal: Cell
April/22/1993
Abstract
Examination of flk-1 receptor tyrosine kinase mRNA expression by in situ hybridization analysis revealed specific association with endothelial cells at all stages of mouse development, including the blood islands in the yolk sac of day 8.5-10.5 embryos, in which the early progenitors of this lineage originate. flk-1 transcripts were abundant in proliferating endothelial cells of vascular sprouts and branching vessels of embryonic and early postnatal brain, but were drastically reduced in adult brain, where proliferation has ceased. Identification of the angiogenic mitogen, vascular endothelial growth factor (VEGF), as the high affinity ligand of Flk-1 and correlation of the temporal and spatial expression pattern of Flk-1 and VEGF suggest a major role of this ligand-receptor signaling system in vasculogenesis and angiogenesis.
load more...