Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell Stem Cell
March/15/2011
Abstract
Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.
Publication
Journal: Molecular Cell
August/26/2007
Abstract
Androgen receptor (AR) is a ligand-dependent transcription factor that plays a key role in prostate cancer. Little is known about the nature of AR cis-regulatory sites in the human genome. We have mapped the AR binding regions on two chromosomes in human prostate cancer cells by combining chromatin immunoprecipitation (ChIP) with tiled oligonucleotide microarrays. We find that the majority of AR binding regions contain noncanonical AR-responsive elements (AREs). Importantly, we identify a noncanonical ARE as a cis-regulatory target of AR action in TMPRSS2, a gene fused to ETS transcription factors in the majority of prostate cancers. In addition, through the presence of enriched DNA-binding motifs, we find other transcription factors including GATA2 and Oct1 that cooperate in mediating the androgen response. These collaborating factors, together with AR, form a regulatory hierarchy that governs androgen-dependent gene expression and prostate cancer growth and offer potential new opportunities for therapeutic intervention.
Publication
Journal: Nature
April/6/2009
Abstract
Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.
Publication
Journal: Circulation
August/19/2008
Abstract
BACKGROUND
The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease- and human patient-specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line.
RESULTS
With the use of a standard embryoid body-based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days. Although the analyzed iPS cell clone showed a delayed and less efficient formation of beating embryoid bodies compared with the ES cell line, the differentiation resulted in an average of 55% of spontaneously contracting iPS cell embryoid bodies. Analyses on molecular, structural, and functional levels demonstrated that iPS cell-derived cardiomyocytes show typical features of ES cell-derived cardiomyocytes. Reverse transcription polymerase chain reaction analyses demonstrated expression of marker genes typical for mesoderm, cardiac mesoderm, and cardiomyocytes including Brachyury, mesoderm posterior factor 1 (Mesp1), friend of GATA2 (FOG-2), GATA-binding protein 4 (GATA4), NK2 transcription factor related, locus 5 (Nkx2.5), T-box 5 (Tbx5), T-box 20 (Tbx20), atrial natriuretic factor (ANF), myosin light chain 2 atrial transcripts (MLC2a), myosin light chain 2 ventricular transcripts (MLC2v), alpha-myosin heavy chain (alpha-MHC), and cardiac troponin T in differentiation cultures of iPS cells. Immunocytology confirmed expression of cardiomyocyte-typical proteins including sarcomeric alpha-actinin, titin, cardiac troponin T, MLC2v, and connexin 43. iPS cell cardiomyocytes displayed spontaneous rhythmic intracellular Ca(2+) fluctuations with amplitudes of Ca(2+) transients comparable to ES cell cardiomyocytes. Simultaneous Ca(2+) release within clusters of iPS cell-derived cardiomyocytes indicated functional coupling of the cells. Electrophysiological studies with multielectrode arrays demonstrated functionality and presence of the beta-adrenergic and muscarinic signaling cascade in these cells.
CONCLUSIONS
iPS cells differentiate into functional cardiomyocytes. In contrast to ES cells, iPS cells allow derivation of autologous functional cardiomyocytes for cellular cardiomyoplasty and myocardial tissue engineering.
Publication
Journal: Blood
November/1/2011
Abstract
The syndrome of monocytopenia, B-cell and NK-cell lymphopenia, and mycobacterial, fungal, and viral infections is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis, and myeloid leukemias. Both autosomal dominant and sporadic cases occur. We identified 12 distinct mutations in GATA2 affecting 20 patients and relatives with this syndrome, including recurrent missense mutations affecting the zinc finger-2 domain (R398W and T354M), suggesting dominant interference of gene function. Four discrete insertion/deletion mutations leading to frame shifts and premature termination implicate haploinsufficiency as a possible mechanism of action as well. These mutations were found in hematopoietic and somatic tissues, and several were identified in families, indicating germline transmission. Thus, GATA2 joins RUNX1 and CEBPA not only as a familial leukemia gene but also as a cause of a complex congenital immunodeficiency that evolves over decades and combines predisposition to infection and myeloid malignancy.
Publication
Journal: Nature Genetics
November/20/2011
Abstract
We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.
Publication
Journal: Cell
July/16/2014
Abstract
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.
Publication
Journal: Cell
June/21/2012
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.
Publication
Journal: Bioinformatics
June/19/2013
Abstract
BACKGROUND
Exome sequencing has proven to be an effective tool to discover the genetic basis of Mendelian disorders. It is well established that copy number variants (CNVs) contribute to the etiology of these disorders. However, calling CNVs from exome sequence data is challenging. A typical read depth strategy consists of using another sample (or a combination of samples) as a reference to control for the variability at the capture and sequencing steps. However, technical variability between samples complicates the analysis and can create spurious CNV calls.
RESULTS
Here, we introduce ExomeDepth, a new CNV calling algorithm designed to control for this technical variability. ExomeDepth uses a robust model for the read count data and uses this model to build an optimized reference set in order to maximize the power to detect CNVs. As a result, ExomeDepth is effective across a wider range of exome datasets than the previously existing tools, even for small (e.g. one to two exons) and heterozygous deletions. We used this new approach to analyse exome data from 24 patients with primary immunodeficiencies. Depending on data quality and the exact target region, we find between 170 and 250 exonic CNV calls per sample. Our analysis identified two novel causative deletions in the genes GATA2 and DOCK8.
BACKGROUND
The code used in this analysis has been implemented into an R package called ExomeDepth and is available at the Comprehensive R Archive Network (CRAN).
Publication
Journal: Circulation
October/6/2011
Abstract
BACKGROUND
Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood.
RESULTS
Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival.
CONCLUSIONS
Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Publication
Journal: Blood
April/3/2014
Abstract
Haploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations. We identified a broad spectrum of disease: hematologic (MDS 84%, AML 14%, chronic myelomonocytic leukemia 8%), infectious (severe viral 70%, disseminated mycobacterial 53%, and invasive fungal infections 16%), pulmonary (diffusion 79% and ventilatory defects 63%, pulmonary alveolar proteinosis 18%, pulmonary arterial hypertension 9%), dermatologic (warts 53%, panniculitis 30%), neoplastic (human papillomavirus+ tumors 35%, Epstein-Barr virus+ tumors 4%), vascular/lymphatic (venous thrombosis 25%, lymphedema 11%), sensorineural hearing loss 76%, miscarriage 33%, and hypothyroidism 14%. Viral infections and lymphedema were more common in individuals with null mutations (P = .038 and P = .006, respectively). Monocytopenia, B, NK, and CD4 lymphocytopenia correlated with the presence of disease (P < .001). GATA2 deficiency unites susceptibility to MDS/AML, immunodeficiency, pulmonary disease, and vascular/lymphatic dysfunction. Early genetic diagnosis is critical to direct clinical management, preventive care, and family screening.
Publication
Journal: Nature Genetics
November/20/2011
Abstract
We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome.
Publication
Journal: Blood
November/1/2011
Abstract
The human syndrome of dendritic cell, monocyte, B and natural killer lymphoid deficiency presents as a sporadic or autosomal dominant trait causing susceptibility to mycobacterial and other infections, predisposition to myelodysplasia and leukemia, and, in some cases, pulmonary alveolar proteinosis. Seeking a genetic cause, we sequenced the exomes of 4 unrelated persons, 3 with sporadic disease, looking for novel, heterozygous, and probably deleterious variants. A number of genes harbored novel variants in person, but only one gene, GATA2, was mutated in all 4 persons. Each person harbored a different mutation, but all were predicted to be highly deleterious and to cause loss or mutation of the C-terminal zinc finger domain. Because GATA2 is the only common mutated gene in 4 unrelated persons, it is highly probable to be the cause of dendritic cell, monocyte, B, and natural killer lymphoid deficiency. This disorder therefore constitutes a new genetic form of heritable immunodeficiency and leukemic transformation.
Publication
Journal: Cell Reports
June/6/2013
Abstract
The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.
Publication
Journal: Blood
June/8/2009
Abstract
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
Publication
Journal: Journal of Biological Chemistry
November/3/2010
Abstract
Transcriptional networks orchestrate complex developmental processes. Such networks are commonly instigated by master regulators of development. Considerable progress has been made in elucidating GATA factor-dependent genetic networks that control blood cell development. GATA-2 is required for the genesis and/or function of hematopoietic stem cells, whereas GATA-1 drives the differentiation of hematopoietic progenitors into a subset of the blood cell lineages. GATA-1 directly represses Gata2 transcription, and this involves GATA-1-mediated displacement of GATA-2 from chromatin, a process termed a GATA switch. GATA switches occur at numerous loci with critical functions, indicating that they are widely utilized developmental control tools.
Publication
Journal: Stem Cells
October/23/2006
Abstract
The homeobox transcription factor Nanog has been proposed to play a crucial role in the maintenance of the undifferentiated state of murine embryonic stem cells. A human counterpart, NANOG, has been identified, but its function and localization have not hitherto been described. We have used a combination of RNA interference and quantitative real-time polymerase chain reaction to study NANOG in human embryonic stem and embryonic carcinoma cells. Transfection of NANOG-specific small interfering RNAs reduced levels of NANOG transcript and protein and induced activation of the extraembryonic endoderm-associated genes GATA4, GATA6, LAMININ B1, and AFP as well as upregulation of trophectoderm-associated genes CDX2, GATA2, hCG-alpha, and hCG-beta. Immunostaining of preimplantation human embryos showed that NANOG was expressed in the inner cell mass of expanded blastocysts but not in earlier-stage embryos, consistent with a role in the maintenance of pluripotency. Taken together, our findings suggest that NANOG acts as a gatekeeper of pluripotency in human embryonic stem and carcinoma cells by preventing their differentiation to extraembryonic endoderm and trophectoderm lineages.
Publication
Journal: Blood
September/20/2005
Abstract
We elucidate the cellular and molecular kinetics of the stepwise differentiation of human embryonic stem cells (hESCs) to primitive and definitive erythromyelopoiesis from human embryoid bodies (hEBs) in serum-free clonogenic assays. Hematopoiesis initiates from CD45 hEB cells with emergence of semiadherent mesodermal-hematoendothelial (MHE) colonies that can generate endothelium and form organized, yolk sac-like structures that secondarily generate multipotent primitive hematopoietic stem progenitor cells (HSPCs), erythroblasts, and CD13+CD45+ macrophages. A first wave of hematopoiesis follows MHE colony emergence and is predominated by primitive erythropoiesis characterized by a brilliant red hemoglobinization, CD71/CD325a (glycophorin A) expression, and exclusively embryonic/fetal hemoglobin expression. A second wave of definitive-type erythroid burst-forming units (BFU-e's), erythroid colony-forming units (CFU-e's), granulocyte-macrophage colony-forming cells (GM-CFCs), and multilineage CFCs follows next from hEB progenitors. These stages of hematopoiesis proceed spontaneously from hEB-derived cells without requirement for supplemental growth factors during hEB differentiation. Gene expression analysis of differentiating hEBs revealed that initiation of hematopoiesis correlated with increased levels of SCL/TAL1, GATA1, GATA2, CD34, CD31, and the homeobox gene-regulating factor CDX4 These data indicate that hematopoietic differentiation of hESCs models the earliest events of embryonic and definitive hematopoiesis in a manner resembling human yolk sac development, thus providing a valuable tool for dissecting the earliest events in human HSPC genesis.
Publication
Journal: Developmental Cell
July/11/2011
Abstract
Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors--GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL--in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes.
Publication
Journal: Nature Cell Biology
May/22/2013
Abstract
Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/11/2012
Abstract
Schizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia.
Publication
Journal: Development (Cambridge)
May/8/2005
Abstract
Definitive hematopoiesis in the mouse embryo originates from the aortic floor in the P-Sp/AGM region in close association with endothelial cells. An important role for Notch1 in the control of hematopoietic ontogeny has been recently established, although its mechanism of action is poorly understood. Here, we show detailed analysis of Notch family gene expression in the aorta endothelium between embryonic day (E) 9.5 and E10.5. Since Notch requires binding to RBPjkappa transcription factor to activate transcription, we analyzed the aorta of the para-aortic splanchnopleura/AGM in RBPjkappa mutant embryos. We found specific patterns of expression of Notch receptors, ligands and Hes genes that were lost in RBPjkappa mutants. Analysis of these mutants revealed the absence of hematopoietic progenitors, accompanied by the lack of expression of the hematopoietic transcription factors Aml1/Runx1, Gata2 and Scl/Tal1. We show that in wild-type embryos, a few cells lining the aorta endothelium at E9.5 simultaneously expressed Notch1 and Gata2, and demonstrate by chromatin immunoprecipitation that Notch1 specifically associated with the Gata2 promoter in E9.5 wild-type embryos and 32D myeloid cells, an interaction lost in RBPjkappamutants. Consistent with a role for Notch1 in regulating Gata2, we observe increased expression of this gene in 32D cells expressing activated Notch1. Taken together, these data strongly suggest that activation of Gata2 expression by Notch1/RBPjkappa is a crucial event for the onset of definitive hematopoiesis in the embryo.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/27/2008
Abstract
Conservation of the vertebrate body plan has been attributed to the evolutionary stability of gene-regulatory networks (GRNs). We describe a regulatory circuit made up of Gata2, Fli1, and Scl/Tal1 and their enhancers, Gata2-3, Fli1+12, and Scl+19, that operates during specification of hematopoiesis in the mouse embryo. We show that the Fli1+12 enhancer, like the Gata2-3 and Scl+19 enhancers, targets hematopoietic stem cells (HSCs) and relies on a combination of Ets, Gata, and E-Box motifs. We show that the Gata2-3 enhancer also uses a similar cluster of motifs and that Gata2, Fli1, and Scl are expressed in embryonic day-11.5 dorsal aorta where HSCs originate and in fetal liver where they multiply. The three HSC enhancers in these tissues and in ES cell-derived hemangioblast equivalents are bound by each of these transcription factors (TFs) and form a fully connected triad that constitutes a previously undescribed example of both this network motif in mammalian development and a GRN kernel operating during the specification of a mammalian stem cell.
Publication
Journal: Cell Stem Cell
February/19/2014
Abstract
Definitive hematopoiesis emerges during embryogenesis via an endothelial-to-hematopoietic transition. We attempted to induce this process in mouse fibroblasts by screening a panel of factors for hemogenic activity. We identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6, that efficiently induces endothelial-like precursor cells, with the subsequent appearance of hematopoietic cells. The precursor cells express a human CD34 reporter, Sca1, and Prominin1 within a global endothelial transcription program. Emergent hematopoietic cells possess nascent hematopoietic stem cell gene-expression profiles and cell-surface phenotypes. After transgene silencing and reaggregation culture, the specified cells generate hematopoietic colonies in vitro. Thus, we show that a simple combination of transcription factors is sufficient to induce a complex, dynamic, and multistep developmental program in vitro. These findings provide insights into the specification of definitive hemogenesis and a platform for future development of patient-specific stem and progenitor cells, as well as more-differentiated blood products.
load more...