Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell Stem Cell
March/16/2011
Abstract
Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.
Publication
Journal: Molecular Cell
August/27/2007
Abstract
Androgen receptor (AR) is a ligand-dependent transcription factor that plays a key role in prostate cancer. Little is known about the nature of AR cis-regulatory sites in the human genome. We have mapped the AR binding regions on two chromosomes in human prostate cancer cells by combining chromatin immunoprecipitation (ChIP) with tiled oligonucleotide microarrays. We find that the majority of AR binding regions contain noncanonical AR-responsive elements (AREs). Importantly, we identify a noncanonical ARE as a cis-regulatory target of AR action in TMPRSS2, a gene fused to ETS transcription factors in the majority of prostate cancers. In addition, through the presence of enriched DNA-binding motifs, we find other transcription factors including GATA2 and Oct1 that cooperate in mediating the androgen response. These collaborating factors, together with AR, form a regulatory hierarchy that governs androgen-dependent gene expression and prostate cancer growth and offer potential new opportunities for therapeutic intervention.
Publication
Journal: Nature
April/7/2009
Abstract
Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.
Publication
Journal: Circulation
August/20/2008
Abstract
BACKGROUND
The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease- and human patient-specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line.
RESULTS
With the use of a standard embryoid body-based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days. Although the analyzed iPS cell clone showed a delayed and less efficient formation of beating embryoid bodies compared with the ES cell line, the differentiation resulted in an average of 55% of spontaneously contracting iPS cell embryoid bodies. Analyses on molecular, structural, and functional levels demonstrated that iPS cell-derived cardiomyocytes show typical features of ES cell-derived cardiomyocytes. Reverse transcription polymerase chain reaction analyses demonstrated expression of marker genes typical for mesoderm, cardiac mesoderm, and cardiomyocytes including Brachyury, mesoderm posterior factor 1 (Mesp1), friend of GATA2 (FOG-2), GATA-binding protein 4 (GATA4), NK2 transcription factor related, locus 5 (Nkx2.5), T-box 5 (Tbx5), T-box 20 (Tbx20), atrial natriuretic factor (ANF), myosin light chain 2 atrial transcripts (MLC2a), myosin light chain 2 ventricular transcripts (MLC2v), alpha-myosin heavy chain (alpha-MHC), and cardiac troponin T in differentiation cultures of iPS cells. Immunocytology confirmed expression of cardiomyocyte-typical proteins including sarcomeric alpha-actinin, titin, cardiac troponin T, MLC2v, and connexin 43. iPS cell cardiomyocytes displayed spontaneous rhythmic intracellular Ca(2+) fluctuations with amplitudes of Ca(2+) transients comparable to ES cell cardiomyocytes. Simultaneous Ca(2+) release within clusters of iPS cell-derived cardiomyocytes indicated functional coupling of the cells. Electrophysiological studies with multielectrode arrays demonstrated functionality and presence of the beta-adrenergic and muscarinic signaling cascade in these cells.
CONCLUSIONS
iPS cells differentiate into functional cardiomyocytes. In contrast to ES cells, iPS cells allow derivation of autologous functional cardiomyocytes for cellular cardiomyoplasty and myocardial tissue engineering.
Publication
Journal: Blood
November/2/2011
Abstract
The syndrome of monocytopenia, B-cell and NK-cell lymphopenia, and mycobacterial, fungal, and viral infections is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis, and myeloid leukemias. Both autosomal dominant and sporadic cases occur. We identified 12 distinct mutations in GATA2 affecting 20 patients and relatives with this syndrome, including recurrent missense mutations affecting the zinc finger-2 domain (R398W and T354M), suggesting dominant interference of gene function. Four discrete insertion/deletion mutations leading to frame shifts and premature termination implicate haploinsufficiency as a possible mechanism of action as well. These mutations were found in hematopoietic and somatic tissues, and several were identified in families, indicating germline transmission. Thus, GATA2 joins RUNX1 and CEBPA not only as a familial leukemia gene but also as a cause of a complex congenital immunodeficiency that evolves over decades and combines predisposition to infection and myeloid malignancy.
Publication
Journal: Nature Genetics
November/21/2011
Abstract
We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.
Publication
Journal: Cell
July/17/2014
Abstract
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.
Publication
Journal: Cell
June/22/2012
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.
Publication
Journal: Circulation
October/7/2011
Abstract
BACKGROUND
Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood.
RESULTS
Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival.
CONCLUSIONS
Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Publication
Journal: Nature Genetics
November/21/2011
Abstract
We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome.
Publication
Journal: Blood
June/9/2009
Abstract
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
Related with