Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(546)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cytokine and Growth Factor Reviews
August/15/2005
Abstract
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.
Publication
Journal: Cancer Cell
March/1/2010
Abstract
MET amplification activates ERBB3/PI3K/AKT signaling in EGFR mutant lung cancers and causes resistance to EGFR kinase inhibitors. We demonstrate that MET activation by its ligand, HGF, also induces drug resistance, but through GAB1 signaling. Using high-throughput FISH analyses in both cell lines and in patients with lung cancer, we identify subpopulations of cells with MET amplification prior to drug exposure. Surprisingly, HGF accelerates the development of MET amplification both in vitro and in vivo. EGFR kinase inhibitor resistance, due to either MET amplification or autocrine HGF production, was cured in vivo by combined EGFR and MET inhibition. These findings highlight the potential to prospectively identify treatment naive, patients with EGFR-mutant lung cancer who will benefit from initial combination therapy.
Publication
Journal: Nature
April/16/1996
Abstract
The protein Grb2 plays a central role in signalling by receptor protein-tyrosine kinases, where its SH2 domain binds to the receptor and its two SH3 domains link to effectors. One target effector is Sos, so Grb2 links receptor protein-tyrosine kinases with the Ras signalling pathway. The SH3 domains can also couple to other signalling proteins, including Vav, c-Abl and dynamin. We have identified several bands in glial and medulloblastoma tumours that are recognized by Grb2 but these did not correspond to any known protein. Here we use recombinant Grb2 to isolate a complementary DNA called Gab1 (for Grb2-associated binder-1). Gab1 shares amino-acid homology and several structural features with IRS-1 (insulin-receptor substrate-1; refs 6,7), is a substrate of the EGF and insulin receptors, and can act as a docking protein for several SH2-containing proteins. Over-expression of Gab1 enhances cell growth and results in transformation. We conclude that Gab1 is a new protein in EGF and insulin receptor signalling which could integrate signals from different systems.
Publication
Journal: Nature
December/9/1996
Abstract
The proteins Gab1 and the related DOS (for 'daughter of sevenless') each bind to substrates of tyrosine kinases like Grb2 or Corkscrew, and act in signalling pathways downstream of tyrosine kinase receptors. Here we show that Gab1 interacts directly with the c-met-encoded receptor tyrosine kinase but not with a number of other tyrosine kinases from different subfamilies. A newly identified proline-rich domain of Gab1 is responsible for the binding of this protein to the tyrosine-phosphorylated bidentate docking site in c-Met. Expression of Gab1 in epithelial cells is sufficient to induce the c-Met-specific activities, including branching morphogenesis. Thus we have discovered a new phosphotyrosine interaction domain in Gab1 and shown that Gab1 is the substrate of the c-Met receptor tyrosine kinase that mediates epithelial morphogenesis.
Publication
Journal: EMBO Journal
January/28/1998
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.
Publication
Journal: Acta Neuropathologica
June/13/2011
Abstract
Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables. A cohort (n = 235) of medulloblastomas from patients aged 0.4-52 years was studied for expression of four immunohistochemical markers: GAB1, β-catenin, filamin A, and YAP1. Immunoreactivity (IR) for GAB1 characterizes only SHH tumors and nuclear IR for β-catenin only WNT tumors. IRs for filamin A and YAP1 identify SHH and WNT tumors. SHH, WNT, and non-SHH/WNT tumors contributed 31, 14, and 55% to the series. All desmoplastic/nodular (D/N) medulloblastomas were SHH tumors, while most WNT tumors (94%) had a classic phenotype. Monosomy 6 was strongly associated with WNT tumors, while PTCH1 loss occurred almost exclusively among SHH tumors. MYC or MYCN amplification and chromosome 17 imbalance occurred predominantly among non-SHH/WNT tumors. Among patients aged 3-16 years and entered onto the SIOP PNET3 trial, outcome was significantly better for children with WNT tumors, when compared to SHH or non-SHH/WNT tumors, which showed similar survival curves. However, high-risk factors (M+ disease, LC/A pathology, MYC amplification) significantly influenced survival in both SHH and non-SHH/WNT groups. We describe a robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples. In corroborating other studies that indicate the value of combining clinical, pathological, and molecular variables in therapeutic stratification schemes for medulloblastoma, we also provide the first outcome data based on a clinical trial cohort and novel data on how molecular subgroups are distributed across the range of disease.
Publication
Journal: Molecular and Cellular Biology
February/14/2000
Abstract
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.
Publication
Journal: Oncogene
January/10/2001
Abstract
The Met receptor tyrosine kinase is the prototypic member of a small subfamily of growth factor receptors that when activated induce mitogenic, motogenic, and morphogenic cellular responses. The ligand for Met is hepatocyte growth factor/scatter factor (HGF/SF) and while normal HGF/SF-Met signaling is required for embryonic development, abnormal Met signaling has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. Following ligand binding and autophosphorylation, Met transmits intercellular signals using a unique multisubstrate docking site present within the C-terminal end of the receptor. The multisubstrate docking site mediates the binding of several adapter proteins such as Grb2, SHC, Crk/CRKL, and the large adapter protein Gab1. These adapter proteins in turn recruit several signal transducing proteins to form an intricate signaling complex. Analysis of how these adapter proteins bind to the Met receptor and what signal transducers they recruit have led to more substantial models of HGF/SF-Met signal transduction and have uncovered new potential pathways that may be involved into Met mediated tumor cell invasion and metastasis.
Publication
Journal: Nature Genetics
October/16/2011
Abstract
Bronchial asthma is a common inflammatory disease caused by the interaction of genetic and environmental factors. Through a genome-wide association study and a replication study consisting of a total of 7,171 individuals with adult asthma (cases) and 27,912 controls in the Japanese population, we identified five loci associated with susceptibility to adult asthma. In addition to the major histocompatibility complex and TSLP-WDR36 loci previously reported, we identified three additional loci: a USP38-GAB1 locus on chromosome 4q31 (combined P = 1.87 × 10(-12)), a locus on chromosome 10p14 (P = 1.79 × 10(-15)) and a gene-rich region on chromosome 12q13 (P = 2.33 × 10(-13)). We observed the most significant association with adult asthma at rs404860 in the major histocompatiblity complex region (P = 4.07 × 10(-23)), which is close to rs2070600, a SNP previously reported for association with FEV(1)/FVC in genome-wide association studies for lung function. Our findings offer a better understanding of the genetic contribution to asthma susceptibility.
Publication
Journal: Journal of Cell Biology
July/31/2000
Abstract
Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met-specific branching morphogenesis. It associates directly with c-Met via the c-Met-binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse yeast two-hybrid technology. The c-Met-binding site is localized to a 13-amino acid region unique to Gab1. Insertion of this site into the Gab1-related protein p97/Gab2 was sufficient to confer c-Met-binding activity. Association with Grb2 was mapped to two sites: a classical SH3-binding site (PXXP) and a novel Grb2 SH3 consensus-binding motif (PX(V/I)(D/N)RXXKP). To detect phosphorylation-dependent interactions of Gab1 with downstream substrates, we developed a modified yeast two-hybrid assay and identified PI(3)K, Shc, Shp2, and CRKL as interaction partners of Gab1. In a trk-met-Gab1-specific branching morphogenesis assay, association of Gab1 with Shp2, but not PI(3)K, CRKL, or Shc was essential to induce a biological response in MDCK cells. Overexpression of a Gab1 mutant deficient in Shp2 interaction could also block HGF/SF-induced activation of the MAPK pathway, suggesting that Shp2 is critical for c-Met/Gab1-specific signaling.
Publication
Journal: EMBO Journal
October/29/1998
Abstract
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.
Publication
Journal: Nature
August/1/2001
Abstract
Dos/Gab family scaffolding adapters (Dos, Gab1, Gab2) bind several signal relay molecules, including the protein-tyrosine phosphatase Shp-2 and phosphatidylinositol-3-OH kinase (PI(3)K); they are also implicated in growth factor, cytokine and antigen receptor signal transduction. Mice lacking Gab1 die during embryogenesis and show defective responses to several stimuli. Here we report that Gab2-/- mice are viable and generally healthy; however, the response (for example, degranulation and cytokine gene expression) of Gab2-/- mast cells to stimulation of the high affinity immunoglobulin-epsilon (IgE) receptor Fc(epsilon)RI is defective. Accordingly, allergic reactions such as passive cutaneous and systemic anaphylaxis are markedly impaired in Gab2-/- mice. Biochemical analyses reveal that signalling pathways dependent on PI(3)K, a critical component of Fc(epsilon)RI signalling, are defective in Gab2-/- mast cells. Our data identify Gab2 as the principal activator of PI(3)K in response to Fc(epsilon)RI activation, thereby providing genetic evidence that Dos/Gab family scaffolds regulate the PI(3)K pathway in vivo. Gab2 and/or its associated signalling molecules may be new targets for developing drugs to treat allergy.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/18/2001
Abstract
The docking protein FRS2 is a major downstream effector that links fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein kinase signaling cascade. In this report, we demonstrate that FRS2 also plays a pivotal role in FGF-induced recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase). We demonstrate that tyrosine phosphorylation of FRS2alpha leads to Grb2-mediated complex formation with the docking protein Gab1 and its tyrosine phosphorylation, resulting in the recruitment and activation of PI3-kinase. Furthermore, Grb2 bound to tyrosine-phosphorylated FRS2 through its SH2 domain interacts primarily via its carboxyl-terminal SH3 domain with a proline-rich region in Gab1 and via its amino-terminal SH3 domain with the nucleotide exchange factor Sos1. Assembly of FRS2alpha:Grb2:Gab1 complex induced by FGF stimulation results in activation of PI3-kinase and downstream effector proteins such as the S/T kinase Akt, whose cellular localization and activity are regulated by products of PI3-kinase. These experiments reveal a unique mechanism for generation of signal diversity by growth factor-induced coordinated assembly of a multidocking protein complex that can activate the Ras/mitogen-activated protein kinase cascade to induce cell proliferation and differentiation, and PI3-kinase to activate a mediator of a cell survival pathway.
Publication
Journal: Cancer Biology and Therapy
April/19/2007
Abstract
WNT and FGF signaling pathways cross-talk during a variety of cellular processes, such as human colorectal carcinogenesis, mouse mammary tumor virus (MMTV)-induced carcinogenesis, E2A-Pbx-induced leukemogenesis, early embryogenesis, body-axis formation, limb-bud formation, and neurogenesis. Canonical WNT signals are transduced through Frizzled receptor and LRP5/6 coreceptor to downregulate GSK3beta (GSK3B) activity not depending on Ser 9 phosphorylation. FGF signals are transduced through FGF receptor to the FRS2-GRB2-GAB1-PI3K-AKT signaling cascade to downregulate GSK3beta activity depending on Ser 9 phosphorylation. Because GSK3beta-dependent phosphorylation of beta-catenin and SNAIL leads to FBXW1 (betaTRCP)-mediated ubiquitination and degradation, GSK3beta downregulation results in the stabilization and the nuclear accumulation of beta-catenin and SNAIL. Nuclear beta-catenin is complexed with TCF/LEF, Legless (BCL9 or BCL9L) and PYGO (PYGO1 or PYGO2) to activate transcription of CCND1, MYC, FGF18 and FGF20 genes for the cell-fate determination. Nuclear SNAIL represses transcription of CDH1 gene, encoding E-cadherin, to induce the epithelial-mesenchymal transition (EMT). Mammary carcinogenesis in MMTV-Wnt1 transgenic mice is accelerated by MMTV infection due to MMTV integration around Fgf3-Fgf4 or Fgf8 loci, and mammary carcinogenesis in MMTV-Fgf3 transgenic mice due to MMTV integration around Wnt1-Wnt10b locus. Coactivation of WNT and FGF signaling pathways in tumors leads to more malignant phenotypes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT and FGF signaling molecules could be utilized as screening method of cancer predisposition. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT and FGF signaling pathways could be developed as novel cancer-related biomarkers for diagnosis, prognosis, and therapy. Cocktail therapy using WNT and FGF inhibitors, such as small-molecule compounds and human neutralizing antibodies, should be developed to increase the efficacy of chemotherapy through the inhibition of recurrence by destructing cancer stem cells.
Related with