Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(132)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Oncogene
April/21/2008
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression by binding to mRNA sequences and repressing target-gene expression post-transcriptionally, either by inhibiting translation or promoting RNA degradation. We have analysed expression of 328 known and 152 novel human miRNAs in 10 benign peripheral zone tissues and 16 prostate cancer tissues using microarrays and found widespread, but not universal, downregulation of miRNAs in clinically localized prostate cancer relative to benign peripheral zone tissue. These findings have been verified by real-time RT-PCR assays on select miRNAs, including miR-125b, miR-145 and let-7c. The downregulated miRNAs include several with proven target mRNAs whose proteins have been previously shown to be increased in prostate cancer by immunohistochemistry, including RAS, E2F3, BCL-2 and MCL-1. Using a bioinformatics approach, we have identified additional potential mRNA targets of one of the miRNAs, (miR-125b) that are upregulated in prostate cancer and confirmed increased expression of one of these targets, EIF4EBP1, in prostate cancer tissues. Our findings indicate that changes in miRNA expression may have an important role in the biology of human prostate cancer.
Publication
Journal: Nature Medicine
October/31/2001
Abstract
All nuclear-encoded mRNAs contain a 5' cap structure (m7GpppN, where N is any nucleotide), which is recognized by the eukaryotic translation initiation factor 4E (eIF4E) subunit of the eIF4F complex. The eIF4E-binding proteins constitute a family of three polypeptides that reversibly repress cap-dependent translation by binding to eIF4E, thus preventing the formation of the eIF4F complex. We investigated the biological function of 4E-BP1 by disrupting its gene (Eif4ebp1) in the mouse. Eif4ebp1-/- mice manifest markedly smaller white fat pads than wild-type animals, and knockout males display an increase in metabolic rate. The males' white adipose tissue contains cells that exhibit the distinctive multilocular appearance of brown adipocytes, and expresses the uncoupling protein 1 (UCP1), a specific marker of brown fat. Consistent with these observations, translation of the peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC1), a transcriptional co-activator implicated in mitochondrial biogenesis and adaptive thermogenesis, is increased in white adipose tissue of Eif4ebp1-/- mice. These findings demonstrate that 4E-BP1 is a novel regulator of adipogenesis and metabolism in mammals.
Publication
Journal: Nature
April/20/2008
Abstract
Transcriptional activation of cytokines, such as type-I interferons (interferon (IFN)-alpha and IFN-beta), constitutes the first line of antiviral defence. Here we show that translational control is critical for induction of type-I IFN production. In mouse embryonic fibroblasts lacking the translational repressors 4E-BP1 and 4E-BP2, the threshold for eliciting type-I IFN production is lowered. Consequently, replication of encephalomyocarditis virus, vesicular stomatitis virus, influenza virus and Sindbis virus is markedly suppressed. Furthermore, mice with both 4E- and 4E-BP2 genes (also known as Eif4ebp1 and Eif4ebp2, respectively) knocked out are resistant to vesicular stomatitis virus infection, and this correlates with an enhanced type-I IFN production in plasmacytoid dendritic cells and the expression of IFN-regulated genes in the lungs. The enhanced type-I IFN response in 4E-BP1-/- 4E-BP2-/- double knockout mouse embryonic fibroblasts is caused by upregulation of interferon regulatory factor 7 (Irf7) messenger RNA translation. These findings highlight the role of 4E-BPs as negative regulators of type-I IFN production, via translational repression of Irf7 mRNA.
Publication
Journal: Cell Metabolism
April/28/2008
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis may play a crucial role in loss of pancreatic beta cell mass, contributing to the development of diabetes. Here we show that induction of 4E-BP1, the suppressor of the mRNA 5' cap-binding protein eukaryotic initiation factor 4E (eIF4E), is involved in beta cell survival under ER stress. 4E-BP1 expression was increased in islets under ER stress in several mouse models of diabetes. The Eif4ebp1 gene encoding 4E-BP1 was revealed to be a direct target of the transcription factor ATF4. Deletion of the Eif4ebp1 gene increased susceptibility to ER stress-mediated apoptosis in MIN6 beta cells and mouse islets, which was accompanied by deregulated translational control. Furthermore, Eif4ebp1 deletion accelerated beta cell loss and exacerbated hyperglycemia in mouse models of diabetes. Thus, 4E-BP1 induction contributes to the maintenance of beta cell homeostasis during ER stress and is a potential therapeutic target for diabetes.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/27/2008
Abstract
The splicing factor SF2/ASF is an oncoprotein that is up-regulated in many cancers and can transform immortal rodent fibroblasts when slightly overexpressed. The mTOR signaling pathway is activated in many cancers, and pharmacological blockers of this pathway are in clinical trials as anticancer drugs. We examined the activity of the mTOR pathway in cells transformed by SF2/ASF and found that this splicing factor activates the mTORC1 branch of the pathway, as measured by S6K and eIF4EBP1 phosphorylation. This activation is specific to mTORC1 because no activation of Akt, an mTORC2 substrate, was detected. mTORC1 activation by SF2/ASF bypasses upstream PI3K/Akt signaling and is essential for SF2/ASF-mediated transformation, as inhibition of mTOR by rapamycin blocked transformation by SF2/ASF in vitro and in vivo. Moreover, shRNA-mediated knockdown of mTOR, or of the specific mTORC1 and mTORC2 components Raptor and Rictor, abolished the tumorigenic potential of cells overexpressing SF2/ASF. These results suggest that clinical tumors with SF2/ASF up-regulation could be especially sensitive to mTOR inhibitors.
Publication
Journal: Cancer Research
February/19/2013
Abstract
Active-site mTOR inhibitors (asTORi) hold great promise for targeting dysregulated mTOR signaling in cancer. Because of the multifaceted nature of mTORC1 signaling, identification of reliable biomarkers for the sensitivity of tumors to asTORi is imperative for their clinical implementation. Here, we show that cancer cells acquire resistance to asTORi by downregulating eukaryotic translation initiation factor (eIF4E)-binding proteins (4E-BPs-EIF4EBP1, EIF4EBP2). Loss of 4E-BPs or overexpression of eIF4E renders neoplastic growth and translation of tumor-promoting mRNAs refractory to mTOR inhibition. Conversely, moderate depletion of eIF4E augments the anti-neoplastic effects of asTORi. The anti-proliferative effect of asTORi in vitro and in vivo is therefore significantly influenced by perturbations in eIF4E/4E-BP stoichiometry, whereby an increase in the eIF4E/4E-BP ratio dramatically limits the sensitivity of cancer cells to asTORi. We propose that the eIF4E/4E-BP ratio, rather than their individual protein levels or solely their phosphorylation status, should be considered as a paramount predictive marker for forecasting the clinical therapeutic response to mTOR inhibitors.
Publication
Journal: BMC Cancer
July/14/2008
Abstract
BACKGROUND
Despite extensive research, the five-year survival rate of oral squamous cell carcinoma (OSCC) patients has not improved. Effective treatment of OSCC requires the identification of molecular targets and signaling pathways to design appropriate therapeutic strategies. Several genes from the mTOR signaling pathway are known to be dysregulated in a wide spectrum of cancers. However, not much is known about the involvement of this pathway in tumorigenesis of OSCC. We therefore investigated the role of the tumor suppressor genes, TSC1 and TSC2, and other members of this pathway in tumorigenesis of OSCC.
METHODS
Expression of genes at the RNA and protein levels was examined by semi-quantitative RT-PCR and western blot analyses, respectively. Loss of heterozygosity was studied using matched blood and tumor DNA samples and microsatellite markers from the TSC1, TSC2 and PTEN candidate regions. The effect of promoter methylation on TSC gene expression was studied by treating cells with methyltransferase inhibitor 5-azacytidine. Methylation status of the TSC2 promoter in tissue samples was examined by combined bisulfite restriction analysis (COBRA).
RESULTS
The semi-quantitative RT-PCR analysis showed downregulation of TSC1, TSC2, EIF4EBP1 and PTEN, and upregulation of PIK3C2A, AKT1, PDPK1, RHEB, FRAP1, RPS6KB1, EIF4E and RPS6 in tumors. A similar observation was made for AKT1 and RPS6KB1 expression in tumors at the protein level. Investigation of the mechanism of downregulation of TSC genes identified LOH in 36.96% and 39.13% of the tumors at the TSC1 and TSC2 loci, respectively. No mutation was found in TSC genes. A low LOH rate of 13% was observed at the PTEN locus. Treatment of an OSCC cell line with the methyltransferase inhibitor 5-azacytidine showed a significant increase in the expression of TSC genes, suggesting methylation of their promoters. However, the 5-azacytidine treatment of non-OSCC HeLa cells showed a significant increase in the expression of the TSC2 gene only. In order to confirm the results in patient tumor samples, the methylation status of the TSC2 gene promoter was examined by COBRA. The results suggested promoter hypermethylation as an important mechanism for its downregulation. No correlation was found between the presence or absence of LOH at the TSC1 and TSC2 loci in 50 primary tumors to their clinicopathological variables such as age, sex, T classification, stage, grade, histology, tobacco habits and lymph node metastasis.
CONCLUSIONS
Our study suggests the involvement of TSC genes and other members of the mTOR signaling pathway in the pathogenesis of OSCC. LOH and promoter methylation are two important mechanisms for downregulation of TSC genes. We suggest that known inhibitors of this pathway could be evaluated for the treatment of OSCC.
Publication
Journal: Neurogenetics
September/15/2009
Abstract
Large tracts of extended homozygosity are more prevalent in outbred populations than previously thought. With the advent of high-density genotyping platforms, regions of extended homozygosity can be accurately located allowing for the identification of rare recessive risk variants contributing to disease. We compared measures of extended homozygosity (greater than 1 Mb in length) in a population of 837 late-onset Alzheimer's disease (LOAD) cases and 550 controls. In our analyses, we identify one homozygous region on chromosome 8 that is significantly associated with LOAD after adjusting for multiple testing. This region contains seven genes from which the most biologically plausible candidates are STAR, EIF4EBP1, and ADRB3. We also compared the total numbers of homozygous runs and the total length of these runs between cases and controls, showing a suggestive difference in these measures (p-values 0.052-0.062). This research suggests a recessive component to the etiology of LOAD.
Publication
Journal: PLoS ONE
August/1/2011
Abstract
Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1⁻/⁻ and Bcl-3⁻/⁻ mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.
Publication
Journal: Neuron
November/3/2013
Abstract
Protein synthesis is critical for circadian clock function, but little is known of how translational regulation controls the master pacemaker in mammals, the suprachiasmatic nucleus (SCN). Here we demonstrate that the pivotal translational repressor, the eukaryotic translational initiation factor 4E binding protein 1 (4E-BP1), is rhythmically regulated via the mechanistic target of rapamycin (mTOR) signaling in the SCN and preferentially represses vasoactive intestinal peptide (Vip) mRNA translation. Knockout (KO) of Eif4ebp1 (gene encoding 4E-BP1) leads to upregulation of VIP and higher amplitude of molecular rhythms in the SCN. Consequently, the 4E-BP1 null mice exhibit accelerated re-entrainment to a shifted light/dark cycle and are more resistant to the rhythm-disruptive effects of constant light. Conversely, in Mtor(+/-) mice VIP expression is decreased and susceptibility to the effects of constant light is increased. These results reveal a key role for mTOR/4E-BP1-mediated translational control in regulating entrainment and synchrony of the master clock.
Publication
Journal: Human Genetics
February/6/2011
Abstract
MicroRNA deregulation is a critical event in tumor initiation and progression. The down-regulation of microRNA-138 has been frequently observed in various cancers, including tongue squamous cell carcinoma (TSCC). Our previous studies suggest that deregulation of miR-138 is associated with the enhanced proliferation and invasion in TSCC cells. Here, we seek to identify the targets of miR-138 in TSCC, and explore their functional relevance in tumorigenesis. Our genome-wide expression profiling experiments identified a panel of 194 unique transcripts that were significantly down-regulated in TSCC cells transfected with miR-138. A comprehensive screening using six different sequence-based microRNA target prediction algorithms revealed that 51 out of these 194 down-regulated transcripts are potential direct targets for miR-138. These targets include: chloride channel, nucleotide-sensitive, 1A (CLNS1A), G protein alpha inhibiting activity polypeptide 2 (GNAI2), solute carrier family 20, member 1 (SLC20A1), eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), and Rho-related GTP-binding protein C (RhoC). GNAI2 is a known proto-oncogene that is involved in the initiation and progression of several different types of tumors. Direct targeting of miR-138 to two candidate binding sequences located in the 3'-untranslated region of GNAI2 mRNA was confirmed using luciferase reporter gene assays. Knockdown of miR-138 in TSCC cells enhanced the expression of GNAI2 at both mRNA and protein levels. In contrast, ectopic transfection of miR-138 reduced the expression of GNAI2, which, in consequence, led to reduced proliferation, cell cycle arrest and apoptosis. In summary, we identified a number of high-confident miR-138 target genes, including proto-oncogene GNAI2, which may play an important role in TSCC initiation and progression.
Publication
Journal: Journal of Clinical Oncology
May/4/2014
Abstract
OBJECTIVE
Clinical studies have implicated the mechanistic target of rapamycin (serine/threonine kinase; MTOR) pathway in the regulation of neuroendocrine tumor (NET) growth. We explored whether expression of MTOR pathway components has prognostic significance in NET patients.
METHODS
We evaluated immunohistochemical expression of MTOR and phospho (p) -MTOR; its downstream targets RPS6KB1, RPS6, and EIF4EBP1; and its upstream regulators, in a cohort of 195 archival neuroendocrine tumors. We correlated expression levels with clinical outcomes, after adjusting for other prognostic variables.
RESULTS
We observed anticipated correlations between expression of upstream components of the MTOR pathway and their downstream targets. Expression of PIK3CA, MTOR, or p-EIF4EBP1 was associated with high MKI67 (Ki-67) labeling index. We failed to identify clinical correlations associated with expression of the upstream regulators TSC1, TSC2, AKT, p-AKT, PDPK1, PTEN, PIK3R1, or PIK3CA. In contrast, high expression of MTOR or its activated downstream targets p-RPS6KB1, p-RPS6, or p-EIF4EBP1 was associated with adverse clinical outcomes.
CONCLUSIONS
Our observations suggest that expression of MTOR or its downstream targets may be adverse prognostic factors in neuroendocrine tumors.
Publication
Journal: Breast Cancer Research and Treatment
December/20/2006
Abstract
BACKGROUND
Doxorubicin and cyclophosphamide (Adriamycin/cytoxan, AC) is a standard chemotherapy regimen for breast cancer, but de novo resistance is frequent. We hypothesized that gene expression profiles predictive of AC response may be different from our previously published patterns with docetaxel.
METHODS
Core biopsies from 40 patients were obtained before treatment with AC (6 cycles, 60/600 mg/m2q3 weeks), and clinical responses recorded after treatment. Gene expression patterns were analyzed using Affymetrix U133A chips which comprise approximately 22,200 genes.
RESULTS
Clinical complete responses (cCR) were observed in 22, partial responses in 7, stable disease in 11 patients. Differential expression between sensitive cCR and resistant tumors with a low false discovery rate (< 5%) was obtained. Of these 253 differentially expressed genes, pathways up-regulated in sensitive tumors included cell cycle (BUB3, CDKN1B), survival (BCL2, BAG1, BIRC1, STK39), stress response (CYP2B6, MAPK14), and estrogen-related pathways (ER, IRS1). Resistant tumors expressed gene promoting transcription (GTF3C1, ILF3), differentiation (ST14, CTNNBIP1), signal transduction (EIF1AX, EIF4EBP1), and amino acid metabolism (SRM, PLOD1, PLOD3). With leave-one-out cross validation, 67% of the samples were correctly classified, with a permutation p-value of 0.4. The previously published 92-gene molecular portrait for docetaxel sensitivity could not discriminate AC sensitivity and resistance.
CONCLUSIONS
This preliminary study supports that molecular profiles for AC response are likely to exist, with unique expression patterns for individual chemotherapy regimens. Larger validation studies are necessary to define and refine patterns for different agents.
Publication
Journal: Genes Chromosomes and Cancer
December/21/2011
Abstract
The chromosomal region 11q13 is amplified in 15-20% of breast cancers; an event not only associated with estrogen receptor (ER) expression but also implicated in resistance to endocrine therapy. Coamplifications of the 11q13 and 8p12 regions are common, suggesting synergy between the amplicons. The aim was to identify candidate oncogenes in the 11q13 region based on recurrent amplification patterns and correlations to mRNA expression levels. Furthermore, the 11q13/8p12 coamplification and its prognostic value, was evaluated at the DNA and the mRNA levels. Affymetrix 250K NspI arrays were used for whole-genome screening of DNA copy number changes in 29 breast tumors. To identify amplicon cores at 11q13 and 8p12, genomic identification of significant targets in cancer (GISTIC) was applied. The mRNA expression levels of candidate oncogenes in the amplicons [RAD9A, RPS6KB2 (S6K2), CCND1, FGF19, FGF4, FGF3, PAK1, GAB2 (11q13); EIF4EBP1 (4EBP1), PPAPDC1B, and FGFR1 (8p12)] were evaluated using real-time PCR. Resulting data revealed three main amplification cores at 11q13. ER expression was associated with the central 11q13 amplification core, encompassing CCND1, whereas 8p12 amplification/gene expression correlated to S6K2 in a proximal 11q13 core. Amplification of 8p12 and high expression of 4EBP1 or FGFR1 was associated with a poor outcome in the group. In conclusion, single nucleotide polymorphism arrays have enabled mapping of the 11q13 amplicon in breast tumors with high resolution. A proximal 11q13 core including S6K2 was identified as involved in the coamplification/coexpression with 8p12, suggesting synergy between the mTOR targets S6K2 and 4EBP1 in breast cancer development and progression.
Publication
Journal: Cancer Immunology, Immunotherapy
April/5/2011
Abstract
Clinical strategies to exploit Vγ2Vδ2 T cell responses for immunotherapy are confronted with short-term increases in cell levels or activity and the development of anergy that reduces the response to therapy with succeeding treatments. We are exploring strategies to increase the yield and durability of elicited Vγ2Vδ2 T cell responses. One approach focuses on the mammalian target of rapamycin (mTOR), which is important for regulating T cell metabolism and function. In Vγ2Vδ2 T cells, mTOR phosphorylates the S6K1 and eIF4EBP1 signaling intermediates after antigen stimulation. Rapamycin inhibited these phosphorylation events without impacting Akt or Erk activation, even though specific inhibition of Akt or Erk in turn reduced the activation of mTOR. The effects of rapamycin on the T cell receptor signaling pathway lead to increased proliferation of treated and antigen-exposed Vγ2Vδ2 cells. Rapamycin altered the phenotype of antigen-specific Vγ2Vδ2 cells by inducing a population shift from CD62L + CD69- to CD62L-CD69+, higher expression of CD25 or Bcl-2, lower levels of CCR5 and increased resistance to Fas-mediated cellular apoptosis. These changes were consistent with rapamycin promoting cell activation while decreasing the susceptibility to cell death that might occur by CCR5 or Fas signaling. Rapamycin treatment during antigen-stimulation of Vγ2Vδ2 T cells may be a strategy for overcoming current obstacles in tumor immunotherapy.
Publication
Journal: Autophagy
November/25/2018
Abstract
The thyroid hormone triiodothyronine (T3) activates thermogenesis by uncoupling electron transport from ATP synthesis in brown adipose tissue (BAT) mitochondria. Although T3 can induce thermogenesis by sympathetic innervation, little is known about its cell autonomous effects on BAT mitochondria. We thus examined effects of T3 on mitochondrial activity, autophagy, and metabolism in primary brown adipocytes and BAT and found that T3 increased fatty acid oxidation and mitochondrial respiration as well as autophagic flux, mitophagy, and mitochondrial biogenesis. Interestingly, there was no significant induction of intracellular reactive oxygen species (ROS) despite high mitochondrial respiration and UCP1 induction by T3. However, when cells were treated with Atg5 siRNA to block autophagy, induction of mitochondrial respiration by T3 decreased, and was accompanied by ROS accumulation, demonstrating a critical role for autophagic mitochondrial turnover. We next generated an Atg5 conditional knockout mouse model (Atg5 cKO) by injecting Ucp1 promoter-driven Cre-expressing adenovirus into Atg5Flox/Flox mice to examine effects of BAT-specific autophagy on thermogenesis in vivo. Hyperthyroid Atg5 cKO mice exhibited lower body temperature than hyperthyroid or euthyroid control mice. Metabolomic analysis showed that T3 increased short and long chain acylcarnitines in BAT, consistent with increased β-oxidation. T3 also decreased amino acid levels, and in conjunction with SIRT1 activation, decreased MTOR activity to stimulate autophagy. In summary, T3 has direct effects on mitochondrial autophagy, activity, and turnover in BAT that are essential for thermogenesis. Stimulation of BAT activity by thyroid hormone or its analogs may represent a potential therapeutic strategy for obesity and metabolic diseases. Abbreviations: ACACA: acetyl-Coenzyme A carboxylase alpha; AMPK: AMP-activated protein kinase; Acsl1: acyl-CoA synthetase long-chain family member 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; BAT: brown adipose tissue; cKO: conditional knockout; COX4I1: cytochrome c oxidase subunit 4I1; Cpt1b: carnitine palmitoyltransferase 1b, muscle; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DIO2: deiodinase, iodothyronine, type 2; DMEM: Dulbecco's modified Eagle's medium; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; Fabp4: fatty acid binding protein 4, adipocyte; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FGF: fibroblast growth factor; FOXO1: forkhead box O1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gpx1: glutathione peroxidase 1; Lipe: lipase, hormone sensitive; MAP1LC3B: microtubule-associated protein 1 light chain 3; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAD: nicotinamide adenine dinucleotide; Nrf1: nuclear respiratory factor 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; Pnpla2: patatin-like phospholipase domain containing 2; Prdm16: PR domain containing 16; PRKA: protein kinase, AMP-activated; RPS6KB: ribosomal protein S6 kinase; RFP: red fluorescent protein; ROS: reactive oxygen species; SD: standard deviation; SEM: standard error of the mean; siRNA: small interfering RNA; SIRT1: sirtuin 1; Sod1: superoxide dismutase 1, soluble; Sod2: superoxide dismutase 2, mitochondrial; SQSTM1: sequestosome 1; T3: 3,5,3'-triiodothyronine; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); ULK1: unc-51 like kinase 1; VDAC1: voltage-dependent anion channel 1; WAT: white adipose tissue.
Publication
Journal: Cancer Science
April/15/2012
Abstract
The Warburg effect describes a heightened propensity of tumor cells to produce lactic acid in the presence or absence of O(2) . A generally held notion is that the Warburg effect is related to energy. Using whole-genome, proteomic MALDI-TOF-MS and metabolite analysis, we investigated the Warburg effect in malignant neuroblastoma N2a cells. The findings show that the Warburg effect serves a functional role in regulating acidic pericellular pH (pHe), which is mediated by metabolic inversion or a fluctuating dominance between glycolytic-rate substrate level phosphorylation (SLP) and mitochondrial (mt) oxidative phosphorylation (OXPHOS) to control lactic acid production. The results also show that an alkaline pHe caused an elevation in SLP/OXPHOS ratio (approximately 98% SLP/OXPHOS); while the ratio was approximately 56% at neutral pHe and approximately 93% in acidic pHe. Acidic pHe paralleled greater expression of mitochondrial biogenesis and OXPHOS genes, such as complex III-V (Uqcr10, Atp5 and Cox7c), mt Fmc1, Romo1, Tmem 173, Tomm6, aldehyde dehydrogenase, mt Sod2 mt biogenesis component PPAR-γ co-activator 1 adjunct to loss of mt fission (Mff). Moreover, acidic pHe corresponded to metabolic efficiency evidenced by a rise in mTOR nutrient sensor GβL, its downstream target (Eif4ebp1), insulin modulators (Trib3 and Fetub) and loss of catabolic (Hadhb, Bdh1 and Pygl)/glycolytic processes (aldolase C, pyruvate kinase, Nampt and aldose-reductase). In contrast, alkaline pHe initiated loss of mitofusin 2, complex II-IV (Sdhaf1, Uqcrq, Cox4i2 and Aldh1l2), aconitase, mitochondrial carrier triple repeat 1 and mt biosynthetic (Coq2, Coq5 and Coq9). In conclusion, the Warburg effect might serve as a negative feedback loop that regulates the pHe toward a broad acidic range by altering lactic acid production through inversion of metabolic systems. These effects were independent of changes in O(2) concentration or glucose supply.
Publication
Journal: Molecular Carcinogenesis
June/12/2016
Abstract
Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.
Publication
Journal: Biology of Reproduction
October/21/2013
Abstract
During the peri-implantation and early placentation periods in pigs, conceptuses (embryo and its extra-embryonic membranes) undergo dramatic morphological changes and differentiation that require the exchange of nutrients (histotroph) and gasses across the trophectoderm and a true epitheliochorial placenta. Of these nutrients, arginine (Arg), leucine (Leu), and glutamine (Gln) are essential components of histotroph; however, little is known about changes in their total amounts in the uterine lumen of cyclic and pregnant gilts and their effects on cell signaling cascades. Therefore, we determined quantities of Arg, Leu, and Gln in uterine luminal fluids and found that total recoverable amounts of these amino acids increased in pregnant but not cyclic gilts between Days 12 and 15 after onset of estrus. We hypothesized that Arg, Leu, and Gln have differential effects on hypertrophy, hyperplasia, and differentiated functions of trophectoderm cells that are critical to conceptus development. Primary porcine trophectoderm (pTr) cells treated with either Arg, Leu, or Gln had increased abundance of phosphorylated RPS6K, RPS6, and EIF4EBP1 compared to basal levels, and this effect was maintained for up to 120 min. When pTr cells were treated with Arg, Leu, and Gln, low levels of pRPS6K and pEIF4EBP1 were detected in the cytosol, but the abundance of nuclear pRPS6K increased. Immunofluorescence analyses revealed abundant amounts of pRPS6 protein in the cytoplasm of pTr cells treated with Arg, Leu, and Gln. These amino acids also increased proliferation of pTr cells. Furthermore, when Arg, Leu, and Gln were combined with siRNAs for either MTOR, RPTOR, or RICTOR, effects of those amino acids on proliferation of pTr cells were significantly inhibited. Collectively, these results indicate that Arg, Leu, and Gln act coordinately to stimulate proliferation of pTr cells through activation of the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.
Publication
Journal: Modern Pathology
April/30/2012
Abstract
AKT1 signaling pathway is important for the regulation of protein synthesis and cell survival with implications in carcinogenesis. In this study, we explored the prognostic significance of AKT1 pathway in intrahepatic cholangiocarcinomas. We investigated the status of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphorylated (p) AKT1 (p-AKT1), p-mammalian target of rapamycin (p-MTOR), p-p70 ribosomal protein S6 kinase (p-RPS6KB2) and p-eukaryotic initiation factor 4E-binding protein-1 (p-EIF4EBP1) in 101 intrahepatic cholangiocarcinomas by immunohistochemistry. Western blot analysis was performed to verify the expression levels of p-AKT1 and p-MTOR. The relationship of protein expression with clinicopathological data and the correlations of protein expression levels were explored. The overexpression of p-AKT1, p-MTOR, and PTEN was associated with a better survival in patients with intrahepatic cholangiocarcinoma (P=0.0137, 0.0194, and 0.0337, respectively). In a multivariate analysis, PTEN was an independent prognostic factor, and p-AKT1 showed tendency (P=0.032 and 0.051, respectively). The overexpression of p-MTOR was correlated with well-to-moderately differentiated tumors (P<0.001) and tumors without metastasis (P=0.046). Expression levels of the AKT1 signaling pathway proteins in this study showed positive correlations with each other, except for PTEN. Aberrant expressions of p-AKT1 and p-MTOR in intrahepatic cholangiocarcinoma were associated with a favorable prognosis, possibly in a PTEN-independent manner. Our results indicate that dysregulation of the AKT1 pathway may have an important role in the development of intrahepatic cholangiocarcinoma, but not necessarily in the progression of the disease.
Publication
Journal: Pathology and Oncology Research
March/9/2017
Abstract
The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.
Publication
Journal: Movement Disorders
October/19/2008
Abstract
Multiple system atrophy (MSA) is an adult-onset sporadic neurodegenerative disease. Although the etiology of MSA remains obscure, recent studies suggest that oxidative stress is associated with the pathogenesis of MSA. The aim of this study was to evaluate genetic associations between the candidate genes involved in oxidative stress and MSA in a case-control study. We examined 119 Japanese patients with MSA and 123 controls, and genotyped single-nucleotide polymorphisms (SNPs) of the following eight genes: CCAAT/enhancer-binding protein homologous protein, activating transcription factor 3, CCAAT/enhancer-binding protein-beta, sequestosome 1 (SQSTM1), cysteinyl-tRNA synthetase, solute carrier family 1A4 (SLC1A4), activating transcription factor 4, and eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1). SLC1A4 SNP +28833 (V398I, rs759458, genotype: Pc = 0.0186, allele: Pc = 0.0303, Pc: P-value with Bonferroni correction), two major haplotypes of SLC1A4 "T-C-C-G" and "T-C-T-A" (Pc = 0.0261 and 0.000768), two-SNP haplotypes of SQSTM1 "C-T" and "A-T" (Pc = 0.0136 and 0.0369), and the most common haplotype of EIF4EBP1 "C-T-G-C" (Pc = 0.0480) showed significant associations. This study revealed genetic associations of SLC1A4, SQSTM1, and EIF4EBP1 with MSA. These results may lend genetic support to the hypothesis that oxidative stress is associated with the pathogenesis of MSA.
Publication
Journal: Oncotarget
January/8/2017
Abstract
The aim of the present study was to identify the specific miRNAs involved in regulation of EIF4EBP1 expression in ovarian cancer and to define their biological function. miRNA mimics and miRNA inhibitors were used in quantitative PCR, western blotting, and luciferase reporter assays to assess cell migration, invasiveness, and viability. miR-125a and miR-125b were downregulated in ovarian cancer tissue and cell lines relative to healthy controls. Increased expression of miR-125a and miR-125b inhibited invasion and migration of SKOV3 and OVCAR-429 ovarian cancer cells and was associated with a decrease in EIF4EBP1 expression. The inverse relationship between miR-125a and miR-125b was corroborated by cotransfection of a luciferase reporter plasmid. Furthermore, miR-125a and miR-125b caused apoptosis and decreased cell viability and migration in an apparently EIF4EBP1-directed manner. Collectively, these results indicate that miR-125a and miR-125b are important posttranscriptional regulators of EIF4EBP1 expression, providing rationale for new therapeutic approaches to suppress tumour invasion and migration using miR-125a, miR-125b, or their mimics for the treatment of ovarian cancer.
Publication
Journal: Acta neuropathologica communications
November/7/2019
Abstract
To date, the development of disease-modifying therapies for Alzheimer's disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (- 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (- 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87-0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68-0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
load more...