Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(459)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Circulation Research
August/1/2005
Abstract
The structural integrity of the heart is maintained by the end-to-end connection between the myocytes called the intercalated disc. The intercalated disc contains different junctional complexes that enable the myocardium to function as a syncytium. One of the junctional complexes, the zonula adherens or adherens junction, consists of the cell adhesion molecule, N-cadherin, which mediates strong homophilic cell-cell adhesion via linkage to the actin cytoskeleton. To determine the function of N-cadherin in the working myocardium, we generated a conditional knockout containing loxP sites flanking exon 1 of the N-cadherin (Cdh2) gene. Using a cardiac-specific tamoxifen-inducible Cre transgene, N-cadherin was deleted in the adult myocardium. Loss of N-cadherin resulted in disassembly of the intercalated disc structure, including adherens junctions and desmosomes. The mutant mice exhibited modest dilated cardiomyopathy and impaired cardiac function, with most animals dying within two months after tamoxifen administration. Decreased sarcomere length and increased Z-line thickness were observed in the mutant hearts consistent with loss of muscle tension because N-cadherin was no longer available to anchor myofibrils at the plasma membrane. Ambulatory electrocardiogram monitoring captured the abrupt onset of spontaneous ventricular tachycardia, confirming that the deaths were arrhythmic in nature. A significant decrease in the gap junction protein, connexin 43, was observed in the N-cadherin-depleted hearts. This animal model provides the first demonstration of the hierarchical relationship of the structural components of the intercalated disc in the working myocardium, thus establishing N-cadherin's paramount importance in maintaining the structural integrity of the heart.
Publication
Journal: Cancer Science
February/23/2006
Abstract
To identify novel methylation-silenced genes in gastric cancers, we carried out a chemical genomic screening, a genome-wide search for genes upregulated by treatment with a demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC). After 5-aza-dC treatment of a gastric cancer cell line (AGS) 579 genes were upregulated 16-fold or more, using an oligonucleotide microarray with 39,000 genes. From these genes, we selected 44 known genes on autosomes whose silencing in gastric cancer has not been reported. Thirty-two of these had CpG islands (CGI) in their putative promoter regions, and all of the CGI were methylated in AGS, giving an estimated number of 421+/-75 (95% confidence interval) methylation-silenced genes. Additionally, we analyzed the methylation status of 16 potential tumor-related genes with promoter CGI that were upregulated four-fold or more, and 14 of these were methylated in AGS. Methylation status of the 32 randomly selected and 16 potential tumor-related genes was analyzed in 10 primary gastric cancers, and 42 genes (ABHD9, ADFP, ALDH1A3, ANXA5, AREG, BDNF, BMP7, CAV1, CDH2, CLDN3, CTSL, EEF1A2, F2R, FADS1, FSD1, FST, FYN, GPR54, GREM1, IGFBP3, IGFBP7, IRS2, KISS1, MARK1, MLF1, MSX1, MTSS1, NT5E, PAX6, PLAGL1, PLAU, PPIC, RBP4, RORA, SCRN1, TBX3, TFAP2C, TNFSF9, ULBP2, WIF1, ZNF177 and ZNF559) were methylated in at least one primary gastric cancer. A metastasis suppressor gene, MTSS1, was located in a genomic region with frequent loss of heterozygosity (8q22), and was expressed abundantly in the normal gastric mucosa, suggesting its role in gastric carcinogenesis. (Cancer Sci 2006; 97: 64 -71).
Publication
Journal: Cell Stem Cell
April/22/2015
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.
Publication
Journal: Arthritis research & therapy
August/12/2010
Abstract
BACKGROUND
Nucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.
METHODS
Microarrays were conducted on bovine AC, AF and NP cells, using Affymetrix Genechip(R) Bovine Genome Arrays. Differential expression levels for a number of genes were confirmed by quantitative real time polymerase chain reaction (qRT-PCR) on bovine, AC, AF and NP cells, as well as separated bovine NP and notochordal (NC) cells. Expression of these novel markers were further tested on normal human AC, AF and NP cells, and degenerate AF and NP cells.
RESULTS
Microarray comparisons between NP/AC&AF and NP/AC identified 34 NP-specific and 49 IVD-specific genes respectively that were differentially expressed>> or =100 fold. A subset of these were verified by qRT-PCR and shown to be expressed in bovine NC cells. Eleven genes (SNAP25, KRT8, KRT18, KRT19, CDH2, IBSP, VCAN, TNMD, BASP1, FOXF1 & FBLN1) were also differentially expressed in normal human NP cells, although to a lesser degree. Four genes (SNAP25, KRT8, KRT18 and CDH2) were significantly decreased in degenerate human NP cells, while three genes (VCAN, TNMD and BASP1) were significantly increased in degenerate human AF cells. The IVD negative marker FBLN1 was significantly increased in both degenerate human NP and AF cells.
CONCLUSIONS
This study has identified a number of novel genes that characterise the bovine and human NP and IVD transcriptional profiles, and allows for discrimination between AC, AF and NP cells. Furthermore, the similarity in expression profiles of the separated NP and NC cell populations suggests that these two cell types may be derived from a common lineage. Although interspecies variation, together with changes with IVD degeneration were noted, use of this gene expression signature will benefit tissue engineering studies where defining the NP phenotype is paramount.
Publication
Journal: Oncogene
June/3/2013
Abstract
Invasion and metastasis are the major features of malignant tumors that are responsible for 90% of cancer-related deaths. Recently, microRNAs have been discovered to have a role in suppressing tumor metastasis. This study's aim was to clarify the roles of miR-145 in gastric carcinomas and its underlying molecular mechanism in regulating tumor metastasis. Here, we demonstrate a stepwise downregulation of miR-145 level in nontumorous gastric mucosa, primary gastric cancers and their secondary metastases. In vitro analysis of miR-145's ectopic expression and loss-of-function suggests that it suppresses gastric cancer cell migration and invasion. In vivo spontaneous metastasis and experimental metastasis assay further confirm its function in suppressing the invasion-metastasis cascade, including impairing local invasion and inhibiting hematogenous metastasis in gastric cancers. Furthermore, we identified a novel mechanism of miR-145 to suppress metastasis. N-cadherin (CDH2) was proved to be a direct target of miR-145, using luciferase assay and western blot. Re-expressing N-cadherin in miR-145-transfected cells reverses their migration and invasion defects. Although not a direct target of miR-145, matrix metallopeptidase 9 (MMP9), but not MMP2, was also significantly decreased in miR-145-expressing cells. We suggest that miR-145 suppresses tumor metastasis by inhibiting N-cadherin protein translation, and then indirectly downregulates its downstream effector MMP9.
Publication
Journal: Clinical Cancer Research
April/13/2009
Abstract
OBJECTIVE
Brain metastases affect 25% of patients with non-small cell lung cancer (NSCLC). We hypothesized that the expression of genes in primary NSCLC tumors could predict brain metastasis and be used for identification of high-risk patients, who may benefit from prophylactic therapy.
METHODS
The expression of 12 genes was measured by real-time quantitative reverse transcriptase PCR in 142 frozen NSCLC tissue samples. Univariate and multivariate Cox regression analysis was used to analyze the correlation between gene expression and the occurrence of brain metastasis. Immunohistochemistry on independent samples was used to verify the findings.
RESULTS
A score based on the expression levels of three genes, CDH2 (N-cadherin), KIFC1, and FALZ, was highly predictive of brain metastasis in early and advanced lung cancer. The probability of remaining brain metastasis-free at 2 years after diagnosis was 90.0+/-9.5% for patients with stage I/stage II tumors and low score compared with 62.7+/-12% for patients with high score (P<0.01). In patients with more advanced lung cancer, the brain metastasis-free survival at 24 months was 89% for patients with low score compared with only 37% in patients with high score (P<0.02). These results were confirmed by immunohistochemical detection of N-cadherin in independent cohort of primary NSCLC.
CONCLUSIONS
The expression levels of three genes in primary NSCLC tumors may be used to identify patients at high risk for brain metastasis who may benefit from prophylactic therapy to the central nervous system.
Publication
Journal: PLoS ONE
September/26/2013
Abstract
We have identified the zinc-finger transcription factor Kruppel-like factor 4 (Klf4) among the transcription factors that are significantly downregulated in their expression during epithelial-mesenchymal transition (EMT) in mammary epithelial cells and in breast cancer cells. Loss and gain of function experiments demonstrate that the down-regulation of Klf4 expression is required for the induction of EMT in vitro and for metastasis in vivo. In addition, reduced Klf4 expression correlates with shorter disease-free survival of subsets of breast cancer patients. Yet, reduced expression of Klf4 also induces apoptosis in cells undergoing TGFβ-induced EMT. Chromatin immunoprecipitation/deep-sequencing in combination with gene expression profiling reveals direct Klf4 target genes, including E-cadherin (Cdh1), N-cadherin (Cdh2), vimentin (Vim), β-catenin (Ctnnb1), VEGF-A (Vegfa), endothelin-1 (Edn1) and Jnk1 (Mapk8). Thereby, Klf4 acts as a transcriptional activator of epithelial genes and as a repressor of mesenchymal genes. Specifically, increased expression of Jnk1 (Mapk8) upon down-regulation of its transcriptional repressor Klf4 is required for EMT cell migration and for the induction of apoptosis. The data demonstrate a central role of Klf4 in the maintenance of epithelial cell differentiation and the prevention of EMT and metastasis.
Publication
Journal: PLoS ONE
January/8/2015
Abstract
The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.
Publication
Journal: Breast Cancer Research
April/6/2009
Abstract
BACKGROUND
Despite intensive study of the mechanisms of chemotherapeutic drug resistance in human breast cancer, few reports have systematically investigated the mechanisms that underlie resistance to the chemotherapy-sensitizing agent tumor necrosis factor (TNF)-alpha. Additionally, the relationship between TNF-alpha resistance mediated by MEK5/Erk5 signaling and epithelial-mesenchymal transition (EMT), a process associated with promotion of invasion, metastasis, and recurrence in breast cancer, has not previously been investigated.
METHODS
To compare differences in the proteome of the TNF-alpha resistant MCF-7 breast cancer cell line MCF-7-MEK5 (in which TNF-alpha resistance is mediated by MEK5/Erk5 signaling) and its parental TNF-a sensitive MCF-7 cell line MCF-7-VEC, two-dimensional gel electrophoresis and high performance capillary liquid chromatography coupled with tandem mass spectrometry approaches were used. Differential protein expression was verified at the transcriptional level using RT-PCR assays. An EMT phenotype was confirmed using immunofluorescence staining and gene expression analyses. A short hairpin RNA strategy targeting Erk5 was utilized to investigate the requirement for the MEK/Erk5 pathway in EMT.
RESULTS
Proteomic analyses and PCR assays were used to identify and confirm differential expression of proteins. In MCF-7-MEK5 versus MCF-7-VEC cells, vimentin (VIM), glutathione-S-transferase P (GSTP1), and creatine kinase B-type (CKB) were upregulated, and keratin 8 (KRT8), keratin 19 (KRT19) and glutathione-S-transferase Mu 3 (GSTM3) were downregulated. Morphology and immunofluorescence staining for E-cadherin and vimentin revealed an EMT phenotype in the MCF-7-MEK5 cells. Furthermore, EMT regulatory genes SNAI2 (slug), ZEB1 (delta-EF1), and N-cadherin (CDH2) were upregulated, whereas E-cadherin (CDH1) was downregulated in MCF-7-MEK5 cells versus MCF-7-VEC cells. RNA interference targeting of Erk5 reversed MEK5-mediated EMT gene expression.
CONCLUSIONS
This study demonstrates that MEK5 over-expression promotes a TNF-alpha resistance phenotype associated with distinct proteomic changes (upregulation of VIM/vim, GSTP1/gstp1, and CKB/ckb; and downregulation of KRT8/krt8, KRT19/krt19, and GSTM3/gstm3). We further demonstrate that MEK5-mediated progression to an EMT phenotype is dependent upon intact Erk5 and associated with upregulation of SNAI2 and ZEB1 expression.
Publication
Journal: British Journal of Cancer
March/9/2009
Abstract
We previously reported hedgehog (Hh) signal activation in the mucus-secreting pit cell of the stomach and in diffuse-type gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is known to be involved in tumour malignancy. However, little is known about whether and how both signallings cooperatively act in diffuse-type GC. By microarray and reverse transcription-PCR, we investigated the expression of those Hh and EMT signalling molecules in pit cells and in diffuse-type GCs. How both signallings act cooperatively in those cells was also investigated by the treatment of an Hh-signal inhibitor and siRNAs of Hh and EMT transcriptional key regulator genes on a mouse primary culture and on human GC cell lines. Pit cells and diffuse-type GCs co-expressed many Hh and EMT signalling genes. Mesenchymal-related genes (WNT5A, CDH2, PDGFRB, EDNRA, ROBO1, ROR2, and MEF2C) were found to be activated by an EMT regulator, SIP1/ZFHX1B/ZEB2, which was a target of a primary transcriptional regulator GLI1 in Hh signal. Furthermore, we identified two cancer-specific Hh targets, ELK1 and MSX2, which have an essential role in GC cell growth. These findings suggest that the gastric pit cell exhibits mesenchymal-like gene expression, and that diffuse-type GC maintains expression through the Hh-EMT pathway. Our proposed extensive Hh-EMT signal pathway has the potential to an understanding of diffuse-type GC and to the development of new drugs.