Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Research
July/21/2010
Abstract
The median survival for patients with locally advanced pancreatic cancer treated with gemcitabine and radiation is approximately 1 year. To develop improved treatment, we have combined a Chk1/2-targeted agent, AZD7762, currently in phase I clinical trials, with gemcitabine and ionizing radiation in preclinical pancreatic tumor models. We found that in vitro AZD7762 alone or in combination with gemcitabine significantly sensitized MiaPaCa-2 cells to radiation. AZD7762 inhibited Chk1 autophosphorylation (S296 Chk1), stabilized Cdc25A, and increased ATR/ATM-mediated Chk1 phosphorylation (S345 Chk1). Radiosensitization by AZD7762 was associated with abrogation of the G(2) checkpoint as well as with inhibition of Rad51 focus formation, inhibition of homologous recombination repair, and persistent gamma-H2AX expression. AZD7762 was also a radiation sensitizer in multiple tumor xenograft models. In both MiaPaCa-2- and patient-derived xenografts, AZD7762 significantly prolonged the median time required for tumor volume doubling in response to gemcitabine and radiation. Together, our findings suggest that G(2) checkpoint abrogation and homologous recombination repair inhibition both contribute to sensitization by Chk1 inhibition. Furthermore, they support the clinical use of AZD7762 in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer.
Publication
Journal: Science
October/11/1995
Abstract
Cyclin-dependent kinases (CDKs) are activated by CDC25 phosphatases, which remove inhibitory phosphate from tyrosine and threonine residues. In human cells, CDC25 proteins are encoded by a multigene family, consisting of CDC25A, CDC25B, and CDC25C. In rodent cells, human CDC25A or CDC25B but not CDC25C phosphatases cooperate with either Ha-RASG12V or loss of RB1 in oncogenic focus formation. Such transformants were highly aneuploid, grew in soft agar, and formed high-grade tumors in nude mice. Overexpression of CDC25B was detected in 32 percent of human primary breast cancers tested. The CDC25 phosphatases may contribute to the development of human cancer.
Publication
Journal: Cancer Cell
April/6/2005
Abstract
Pten-/- cells display a partially defective checkpoint in response to ionizing radiation (IR). The checkpoint defect was traced to the ability of AKT to phosphorylate CHK1 at serine 280, since a nonphosphorylated mutant of CHK1 (S280A) complemented the checkpoint defect and restored CDC25A degradation. CHK1 phosphorylation at serine 280 led to covalent binding of 1 to 2 molecules of ubiquitin and cytoplasmic CHK1 localization. Primary breast carcinomas lacking PTEN expression and having elevated AKT phosphorylation had increased cytoplasmic CHK1 and displayed aneuploidy (p <0.005). We conclude that loss of PTEN and subsequent activation of AKT impair CHK1 through phosphorylation, ubiquitination, and reduced nuclear localization to promote genomic instability in tumor cells.
Publication
Journal: EMBO Journal
October/30/1994
Abstract
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.
Publication
Journal: Molecular Cancer Therapeutics
November/22/2004
Abstract
Many conventional anticancer treatments kill cells irrespective of whether they are normal or cancerous, so patients suffer from adverse side effects due to the loss of healthy cells. Anticancer insights derived from cell cycle research has given birth to the idea of cell cycle G2 checkpoint abrogation as a cancer cell specific therapy, based on the discovery that many cancer cells have a defective G1 checkpoint resulting in a dependence on the G2 checkpoint during cell replication. Damaged DNA in humans is detected by sensor proteins (such as hHUS1, hRAD1, hRAD9, hRAD17, and hRAD26) that transmit a signal via ATR to CHK1, or by another sensor complex (that may include gammaH2AX, 53BP1, BRCA1, NBS1, hMRE11, and hRAD50), the signal of which is relayed by ATM to CHK2. Most of the damage signals originated by the sensor complexes for the G2 checkpoint are conducted to CDC25C, the activity of which is modulated by 14-3-3. There are also less extensively explored pathways involving p53, p38, PCNA, HDAC, PP2A, PLK1, WEE1, CDC25B, and CDC25A. This review will examine the available inhibitors of CHK1 (Staurosporin, UCN-01, Go6976, SB-218078, ICP-1, and CEP-3891), both CHK1 and CHK2 (TAT-S216A and debromohymenialdisine), CHK2 (CEP-6367), WEE1 (PD0166285), and PP2A (okadaic acid and fostriecin), as well as the unknown checkpoint inhibitors 13-hydroxy-15-ozoapathin and the isogranulatimides. Among these targets, CHK1 seems to be the most suitable target for therapeutic G2 abrogation to date, although an unexplored target such as 14-3-3 or the strategy of targeting multiple proteins at once may be of interest in the future.
Publication
Journal: EMBO Journal
August/3/2009
Abstract
DNA damage provokes DNA repair, cell-cycle regulation and apoptosis. This DNA-damage response encompasses gene-expression regulation at the transcriptional and post-translational levels. We show that cellular responses to UV-induced DNA damage are also regulated at the post-transcriptional level by microRNAs. Survival and checkpoint response after UV damage was severely reduced on microRNA-mediated gene-silencing inhibition by knocking down essential components of the microRNA-processing pathway (Dicer and Ago2). UV damage triggered a cell-cycle-dependent relocalization of Ago2 into stress granules and various microRNA-expression changes. Ago2 relocalization required CDK activity, but was independent of ATM/ATR checkpoint signalling, whereas UV-responsive microRNA expression was only partially ATM/ATR independent. Both microRNA-expression changes and stress-granule formation were most pronounced within the first hours after genotoxic stress, suggesting that microRNA-mediated gene regulation operates earlier than most transcriptional responses. The functionality of the microRNA response is illustrated by the UV-inducible miR-16 that downregulates checkpoint-gene CDC25a and regulates cell proliferation. We conclude that microRNA-mediated gene regulation adds a new dimension to the DNA-damage response.
Publication
Journal: Cancer Cell
August/23/2004
Abstract
The haploinsufficient tumor suppressor Chk1 is essential for embryonic cells, but the consequences of Chk1 loss in adult tissues are unknown. Using conditional Chk1 mice, we find that proliferating mammary cells lacking Chk1 undergo apoptosis leading to developmental defects. Conditional Chk1 heterozygosity increased the number of S phase cells and caused spontaneous DNA damage. Chk1+/- epithelia also exhibit a miscoordinated cell cycle in which S phase cells display an early mitotic phenotype. These cells maintain high levels of Cdc25A, which can promote inappropriate cell cycle transitions. Thus, Chk1 heterozygosity results in three distinct haploinsufficient phenotypes that can contribute to tumorigenesis: inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry.
Publication
Journal: Nature
June/8/1997
Abstract
The activity of the cyclin-dependent kinases (CDKs) that control cell growth and division can be negatively regulated by tyrosine phosphorylation or by the binding of various CDK inhibitors. Whereas regulation by tyrosine phosphorylation is well documented in CDKs that function during mitosis, little is known about its role in the regulation of CDKs that act in the G1 phase of the cell cycle. In contrast, much evidence has accumulated on the regulation of G1 CDKs by CDK inhibitors. The cytokine TGF-beta inhibits growth by causing cell-cycle arrest as a result of increasing the concentration of the Cdk4/6 inhibitor p15(INK4B/MTS2) (refs 3, 4). Here we report that TGF-beta can also cause the inhibition of Cdk4 and Cdk6 by increasing their level of tyrosine phosphorylation. Tyrosine phosphorylation and inactivation of Cdk4/6 in a human mammary epithelial cell line are shown to result from the ability of TGF-beta to repress expression of the CDK tyrosine phosphatase Cdc25A. Repression of Cdc25A and induction of p15 are independent effects mediating the inhibition of Cdk4/6 by TFG-beta.
Publication
Journal: Molecular and Cellular Biology
September/9/1999
Abstract
Functional inactivation of the pRB pathway is a very frequent event in human cancer, resulting in deregulated activity of the E2F transcription factors. To understand the functional role of the E2Fs in cell proliferation, we have developed cell lines expressing E2F-1, E2F-2, and E2F-3 fused to the estrogen receptor ligand binding domain (ER). In this study, we demonstrated that activation of all three E2Fs could relieve the mitogen requirement for entry into S phase in Rat1 fibroblasts and that E2F activity leads to a shortening of the G(0)-G(1) phase of the cell cycle by 6 to 7 h. In contrast to the current assumption that E2F-1 is the only E2F capable of inducing apoptosis, we showed that deregulated E2F-2 and E2F-3 activities also result in apoptosis. Using the ERE2F-expressing cell lines, we demonstrated that several genes containing E2F DNA binding sites are efficiently induced by the E2Fs in the absence of protein synthesis. Furthermore, CDC25A is defined as a novel E2F target whose expression can be directly regulated by E2F-1. Data showing that CDC25A is an essential target for E2F-1, since its activity is required for efficient induction of S phase by E2F-1, are provided. Finally, our results show that expression of two E2F target genes, namely CDC25A and cyclin E, is sufficient to induce entry into S phase in quiescent fibroblasts. Taken together, our results provide an important step in defining how E2F activity leads to deregulated proliferation.
Publication
Journal: Journal of Cell Biology
December/14/2010
Abstract
In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate-dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21(Cip1) accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage.
Publication
Journal: Cytokine and Growth Factor Reviews
October/12/2005
Abstract
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.
Publication
Journal: Science Signaling
October/30/2012
Abstract
The receptor programmed death 1 (PD-1) inhibits T cell proliferation and plays a critical role in suppressing self-reactive T cells, and it also compromises antiviral and antitumor responses. To determine how PD-1 signaling inhibits T cell proliferation, we used human CD4(+) T cells to examine the effects of PD-1 signaling on the molecular control of the cell cycle. The ubiquitin ligase SCF(Skp2) degrades p27(kip1), an inhibitor of cyclin-dependent kinases (Cdks), and PD-1 blocked cell cycle progression through the G(1) phase by suppressing transcription of SKP2, which encodes a component of this ubiquitin ligase. Thus, in T cells stimulated through PD-1, Cdks were not activated, and two critical Cdk substrates were not phosphorylated. Activation of PD-1 inhibited phosphorylation of the retinoblastoma gene product, which suppressed expression of E2F target genes. PD-1 also inhibited phosphorylation of the transcription factor Smad3, which increased its activity. These events induced additional inhibitory checkpoints in the cell cycle by increasing the abundance of the G(1) phase inhibitor p15(INK4) and repressing the Cdk-activating phosphatase Cdc25A. PD-1 suppressed SKP2 transcription by inhibiting phosphoinositide 3-kinase-Akt and Ras-mitogen-activated and extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling. Exposure of cells to the proliferation-promoting cytokine interleukin-2 restored activation of MEK-ERK signaling, but not Akt signaling, and only partially restored SKP2 expression. Thus, PD-1 blocks cell cycle progression and proliferation of T lymphocytes by affecting multiple regulators of the cell cycle.
Publication
Journal: Frontiers in Bioscience - Landmark
December/19/2004
Abstract
Ectopic expression of the c-Myc oncoprotein prevents cell cycle arrest in response to growth-inhibitory signals, differentiation stimuli, or mitogen withdrawal. Moreover, Myc activation in quiescent cells is sufficient to induce cell cycle entry in the absence of growth factors. Thus, Myc transduces a potent mitogenic stimulus but, concomitantly, induces apoptosis in the absence of survival factors. We review here recent progress in our understanding of the molecular mechanisms linking Myc activity to cell cycle control. Myc is a positive regulator of G1-specific cyclin-dependent kinases (CDKs) and, in particular, of cyclin E/CDK2 complexes. Cyclin D/CDK4 and CDK6 may conceivably also be activated by Myc, but the circumstances in which this occurs remain to be explored. Myc acts via at least three distinct pathways which can enhance CDK function: (1) functional inactivation of the CDK inhibitor p27Kip1 and probably also of p21Cip1 and p57Kip2, (2) induction of the CDK-activating phosphatase Cdc25A and (3) - in an ill understood and most likely indirect way - deregulation of cyclin E expression. Constitutive expression of either Myc or cyclin E can prevent growth arrest by p16INK4a (an inhibitor of cyclin D/CDK4, but not of cyclin E/CDK2). In cells, p16INK4a inhibits phosphorylation, and thus induces activation of the Retinoblastoma-family proteins (pRb, p107 and p130). Surprisingly, this effect of p16 is not altered in the presence of Myc or cyclin E. Thus, Myc and cyclin E/CDK2 activity unlink activation of p16 and pRb from growth arrest. Finally, Myc may itself be a functional target of cyclin D/CDK4 through its direct interaction with p107. We discuss how the effects of Myc on cell cycle control may relate to its oncogenic activity, and in particular to its ability to cooperate with activated Ras oncoproteins.
Publication
Journal: Progress in cell cycle research
June/11/2000
Abstract
Activation of cyclin-dependent kinases in higher eukaryotic cells can be achieved through dephosphorylation by members of the Cdc25 phosphatase family, Cdc25A, Cdc25B and Cdc25C. Cdc25A plays an important role at the G1/S-phase transition. Cdc25B undergoes activation during S-phase and plays a role in activating the mitotic kinase Cdk1/cyclin B in the cytoplasm. Active Cdk1/cyclin B then phosphorylates and activates Cdc25C leading to a positive feedback mechanism and to entry into mitosis. Cdc25A and B are potential human oncogenes. In addition, Cdc25 is a main player of the G2 arrest caused by DNA damage or in the presence of unreplicated DNA.
Publication
Journal: Genes and Development
November/2/2009
Abstract
The Rb-E2F pathway drives cell cycle progression and cell proliferation, and the molecular strategies safeguarding its activity are not fully understood. Here we report that E2F1 directly transactivates miR-449a/b. miR-449a/b targets and inhibits oncogenic CDK6 and CDC25A, resulting in pRb dephosphorylation and cell cycle arrest at G1 phase, revealing a negative feedback regulation of the pRb-E2F1 pathway. Moreover, miR-449a/b expression in cancer cells is epigenetically repressed through histone H3 Lys27 trimethylation, and epigenetic drug treatment targeting histone methylation results in strong induction of miR-449a/b. Our study reveals a tumor suppressor function of miR-449a/b through regulating Rb/E2F1 activity, and suggests that escape from this regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer.
Publication
Journal: Molecular Cell
December/30/2008
Abstract
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.
Publication
Journal: EMBO Journal
January/26/1997
Abstract
We show here that c-Myc antagonizes the cyclin-dependent kinase (CDK) inhibitor p27Kip1. p27 expressed from recombinant retroviruses in Rat1 cells associated with and inhibited cyclin E/CDK2 complexes, induced accumulation of the pRb and p130 proteins in their hypophosphorylated forms, and arrested cells in G1. Prior expression of c-Myc prevented inactivation of cyclin E/CDK2 as well as dephosphorylation of pRb and p130, and allowed continuous cell proliferation in the presence of p27. This effect did not require ubiquitin-mediated degradation of p27. Myc altered neither the susceptibility of cyclin E/CDK2 to inhibition by p27, nor the intrinsic CDK-inhibitory activity of p27, but induced sequestration of p27 in a form unable to bind cyclin E/CDK2. Neither Myc itself nor other G1-cyclin/CDK complexes were directly responsible for p27 sequestration. Retroviral expression of G1 cyclins (D1-3, E or A) or of the Cdc25A phosphatase did not overcome p27-induced arrest. Growth rescue by Myc required dimerization with Max, DNA binding and an intact transcriptional activation domain, as previously shown for cellular transformation. We propose that this activity is mediated by the product of an as yet unknown Myc-Max target gene(s) and represents an essential aspect of Myc's mitogenic and oncogenic functions.
Publication
Journal: Molecular Biology of the Cell
December/15/2010
Abstract
Induction of a G1 phase cell cycle arrest, caused primarily by the inhibition of cyclin-dependent-kinase 2 (cdk2), is a critical step in the differentiation of myoblasts into myotubes. Here, we report that two microRNAs, miR-322/424 and miR-503, are induced and promote cdk2 inhibition during myogenesis. These microRNAs down-regulate Cdc25A, the phosphatase responsible for removing inhibitory phosphorylation of cdk2, both in myoblasts differentiating into myotubes and in nonmuscle cells. Cdc25A is down-regulated during muscle differentiation by multiple pathways: action of these two microRNAs, proteasomal degradation of Cdc25A protein and transcriptional repression. Overexpression of Cdc25A or of cdk2 with mutations on T14 and Y15 (cdk2-AF), so that it cannot be inhibited by phosphorylation, decreases differentiation and differentiation-induced cell cycle quiescence. Introduction of miR-322/424 and miR-503 in heterologous cancer cells induces G1 arrest, which is also attenuated by overexpression of the cdk2-AF mutant. Until now Cdc25A and the inhibitory phosphorylation on T14 and Y15 of cdk2 have only been implicated in the intra-S phase checkpoint pathway after DNA damage. Our results reveal an unexpected role of Cdc25A down-regulation and the inhibitory phosphorylation of cdk2 T14 and Y15 in cell cycle quiescence during muscle differentiation and implicate two muscle differentiation-induced microRNAs in the process.
Publication
Journal: EMBO Journal
December/9/2002
Abstract
DNA replication in higher eukaryotes requires activation of a Cdk2 kinase by Cdc25A, a labile phosphatase subject to further destabilization upon genotoxic stress. We describe a distinct, markedly stable form of Cdc25A, which plays a previously unrecognized role in mitosis. Mitotic stabilization of Cdc25A reflects its phosphorylation on Ser17 and Ser115 by cyclin B-Cdk1, modifications required to uncouple Cdc25A from its ubiquitin-proteasome-mediated turnover. Cdc25A binds and activates cyclin B-Cdk1, accelerates cell division when overexpressed, and its downregulation by RNA interference (RNAi) delays mitotic entry. DNA damage-induced G(2) arrest, in contrast, is accompanied by proteasome-dependent destruction of Cdc25A, and ectopic Cdc25A abrogates the G(2) checkpoint. Thus, phosphorylation-mediated switches among three differentially stable forms ensure distinct thresholds, and thereby distinct roles for Cdc25A in multiple cell cycle transitions and checkpoints.
Publication
Journal: Journal of Biological Chemistry
July/21/2003
Abstract
UV and ionizing radiation (IR) activate DNA damage checkpoints and induce Cdc25A degradation (Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., and Lukas, J. (2000) Science 288, 1425-1429; Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J., and Lukas J. (2001) Nature 410, 842-847). The degradation of Cdc25A is abrogated by caffeine, which implicates Chk1 as the potential mediator (Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., and Lukas, J. (2000) Science 288, 1425-1429). However, the involvement of Chk1 is far from clear, because caffeine is a rather nonspecific inhibitor of the ATR/Chk1 signaling pathway. Additionally, it is not known whether DNA-damaging drugs commonly used in chemotherapy, which may activate different signal transduction pathways than UV or IR, also confer Cdc25A degradation. Herein, we show that camptothecin and doxorubicin, two widely used topoisomerase inhibitors conferring S and G2 arrest, respectively, cause the degradation of Cdc25A. Using a small interfering RNA that enables the specific elimination of Chk1 expression, we show that the observed proteolysis of Cdc25A is mediated through Chk1. Moreover, Cdc25A overexpression abrogates the Chk1-mediated degradation and overcomes the doxorubicin-induced G2 arrest through dephosphorylation and activation of Cdc2/Cdk1 in a dose-dependent manner. These results suggest that: (a) Cdc25A is involved in the G2/M transition in addition to its commonly accepted effect on G1/S progression, and (b) Chk1 mediates both S and G2 checkpoint and is thus a more ubiquitous cell cycle checkpoint mediator than previously thought.
Publication
Journal: American Journal of Physiology - Cell Physiology
August/23/2004
Abstract
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/3/2004
Abstract
Response to DNA damage and cell-cycle regulation differ markedly between embryonic stem (ES) cells and somatic cells. ES cells require exquisitely sensitive mechanisms to maintain genomic integrity and do so, in part, by suppressing spontaneous mutation. Spontaneous mutation frequency in somatic cells is approximately 10(-4) compared with 10(-6) for ES cells. ES cells also lack a G(1) checkpoint and are hypersensitive to IR and other DNA-damaging agents. These characteristics facilitate apoptosis and the removal of cells with a mutational burden from the population, thereby keeping the population free of damaged cells. Here, we identify signaling pathways that are compromised and lead to a natural absence of aG(1) arrest in ES cells after DNA damage. The affected pathways are those mediated by p53 and p21 and by ATM, Chk2, Cdc25A, and Cdk2. In ES cells, Chk2 kinase is not intranuclear as in somatic cells but is sequestered at centrosomes and is unavailable to phosphorylate Cdc25A phosphatase and cause its degradation. Although ectopic expression of Chk2 does not rescue the p53/p21 pathway, its expression is sufficient to allow it to phosphorylate Cdc25A, activate downstream targets, restore a G(1) arrest, and protect the cell from apoptosis.
Publication
Journal: Cancer Cell
February/5/2008
Abstract
The Cdc25A phosphatase positively regulates cell-cycle transitions, is degraded by the proteosome throughout interphase and in response to stress, and is overproduced in human cancers. The kinases targeting Cdc25A for proteolysis during early cell-cycle phases have not been identified, and mechanistic insight into the cause of Cdc25A overproduction in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Cdc25A to promote its proteolysis in early cell-cycle phases. Phosphorylation by GSK-3beta requires priming of Cdc25A, and this can be catalyzed by polo-like kinase 3 (Plk-3). Importantly, a strong correlation between Cdc25A overproduction and GSK-3beta inactivation was observed in human tumor tissues, indicating that GSK-3beta inactivation may account for Cdc25A overproduction in a subset of human tumors.
Publication
Journal: Molecular and Cellular Biology
September/9/1999
Abstract
Human Cdc25 phosphatases play important roles in cell cycle regulation by removing inhibitory phosphates from tyrosine and threonine residues of cyclin-dependent kinases. Three human Cdc25 isoforms, A, B, and C, have been discovered. Cdc25B and Cdc25C play crucial roles at the G(2)/M transition. In the present study, we have investigated the function of human Cdc25A phosphatase. Cell lines that express human Cdc25A in an inducible manner have been generated. Ectopic expression of Cdc25A accelerates the G(1)/S-phase transition, indicating that Cdc25A controls an event(s) that is rate limiting for entry into S phase. Furthermore, we carried out a detailed analysis of the expression and activation of human Cdc25A. Activation of endogenous Cdc25A occurs during late G(1) phase and increases in S and G(2) phases. We further demonstrate that Cdc25A is activated at the same time as cyclin E- and cyclin A-dependent kinases. In vitro, Cdc25A dephosphorylates and activates the cyclin-Cdk complexes that are active during G(1). Overexpression of Cdc25A in the inducible system, however, leads to a premature activation of both cyclin E-Cdk2 and cyclin A-Cdk2 complexes, while no effect of cyclin D-dependent kinases is observed. Furthermore, Cdc25A overexpression induces a tyrosine dephosphorylation of Cdk2. These results suggest that Cdc25A is an important regulator of the G(1)/S-phase transition and that cyclin E- and cyclin A-dependent kinases act as direct targets.
load more...