Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(451)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Cell
February/26/2003
Abstract
The "BH3-only" proteins of the BCL-2 family require "multidomain" proapoptotic members BAX and BAK to release cytochrome c from mitochondria and kill cells. We find short peptides representing the alpha-helical BH3 domains of BID or BIM are capable of inducing oligomerization of BAK and BAX to release cytochrome c. Another subset characterized by the BH3 peptides from BAD and BIK cannot directly activate BAX, BAK but instead binds antiapoptotic BCL-2, resulting in the displacement of BID-like BH3 domains that initiate mitochondrial dysfunction. Transduced BAD-like and BID-like BH3 peptides also displayed synergy in killing leukemic cells. These data support a two-class model for BH3 domains: BID-like domains that "activate" BAX, BAK and BAD-like domains that "sensitize" by occupying the pocket of antiapoptotic members.
Publication
Journal: Nature Cell Biology
January/8/2007
Abstract
Although the BCL-2 family constitutes a crucial checkpoint in apoptosis, the intricate interplay between these family members remains elusive. Here, we demonstrate that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX-BAK to release cytochrome c. Conversely, anti-apoptotic BCL-2-BCL-X(L)-MCL-1 sequesters these 'activator' BH3-only molecules into stable complexes, thus preventing the activation of BAX-BAK. Extensive mutagenesis of BAX-BAK indicates that their activity is not kept in check by BCL-2-BCL-X(L)-MCL-1. Anti-apoptotic BCL-2 members are differentially inactivated by the remaining 'inactivator' BH3-only molecules including BAD, NOXA, BMF, BIK/BLK and HRK/DP5. BAD displaces tBID, BIM or PUMA from BCL-2-BCL-X(L) to activate BAX-BAK, whereas NOXA specifically antagonizes MCL-1. Coexpression of BAD and NOXA killed wild-type but not Bax, Bak doubly deficient cells or Puma deficient cells with Bim knockdown, indicating that activator BH3-only molecules function downstream of inactivator BH3-only molecules to activate BAX-BAK. Our data establish a hierarchical regulation of mitochondrion-dependent apoptosis by various BCL-2 subfamilies.
Publication
Journal: Current Opinion in Cell Biology
February/2/2006
Abstract
BH3-only members of the Bcl-2 intracellular protein family, which include Bim, Bmf, Bik, Bad, Bid, Puma, Noxa and Hrk, mediate many developmentally programmed and induced cytotoxic signals. They have key roles in development, tissue homeostasis, immunity and tumor suppression, and compounds mimicking them are promising anti-cancer agents. Their activity is normally constrained by transcriptional and/or diverse post-transcriptional controls. When activated, these death ligands engage pro-survival Bcl-2-like proteins via the BH3 domain, inactivating their function. Bim and Puma bind all the pro-survival proteins, whereas others, such as Noxa and Bad, engage distinct subsets and exhibit complementary killing. Hence, multiple pro-survival proteins must be inactivated to unleash Bax and Bak, which drive apoptosis. Whether certain BH3-only proteins also directly activate Bax/Bak remains controversial.
Publication
Journal: Cell Death and Differentiation
August/27/2002
Abstract
BH3-only proteins are structurally distant members of the Bcl-2 protein family that trigger apoptosis. Genetic experiments have shown that these proteins are essential initiators of programmed cell death in species as distantly related as mice and C. elegans. BH3-only proteins share with each other and with the remainder of the Bcl-2 family only a nine amino acid BH3 (Bcl-2 Homology) region. Mutational analyses have demonstrated that this domain is required for their ability to bind to Bcl-2-like pro-survival proteins and to initiate apoptosis. So far only one BH3-only protein, EGL-1, has been identified in C. elegans and it is required for all developmentally programmed death of somatic cells in this species. In contrast, mammals have at least 10 BH3-only proteins that differ in their expression pattern and mode of activation. Studies in gene targeted mice have indicated that different BH3-only proteins are required for the initiation of distinct apoptotic stimuli. The pro-apoptotic activities of BH3-only proteins are stringently controlled by a variety of mechanisms. C. elegans egl-1 as well as mammalian hrk/dp5, noxa, puma/bbc3 and bim/bod are regulated by a diverse range of transcription factors. Certain BH3-only proteins, including Bad, Bik/Nbk, Bid, Bim/Bod and Bmf, are restrained by post-translational modifications that cause their sequestration from pro-survival Bcl-2 family members. In this review we describe current knowledge of the functions and transcriptional as well as post-translational control mechanisms of BH3-only proteins.
Publication
Journal: Cell
June/17/1998
Abstract
Gain-of-function mutations in the Caenorhabditis elegans gene egl-1 cause the HSN neurons to undergo programmed cell death. By contrast, a loss-of-function egl-1 mutation prevents most if not all somatic programmed cell deaths. The egl-1 gene negatively regulates the ced-9 gene, which protects against cell death and is a member of the bcl-2 family. The EGL-1 protein contains a nine amino acid region similar to the Bcl-2 homology region 3 (BH3) domain but does not contain a BH1, BH2, or BH4 domain, suggesting that EGL-1 may be a member of a family of cell death activators that includes the mammalian proteins Bik, Bid, Harakiri, and Bad. The EGL-1 and CED-9 proteins interact physically. We propose that EGL-1 activates programmed cell death by binding to and directly inhibiting the activity of CED-9, perhaps by releasing the cell death activator CED-4 from a CED-9/CED-4-containing protein complex.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/27/2010
Abstract
The P23H mutation within the rhodopsin gene (RHO) causes rhodopsin misfolding, endoplasmic reticulum (ER) stress, and activates the unfolded protein response (UPR), leading to rod photoreceptor degeneration and autosomal dominant retinitis pigmentosa (ADRP). Grp78/BiP is an ER-localized chaperone that is induced by UPR signaling in response to ER stress. We have previously demonstrated that BiP mRNA levels are selectively reduced in animal models of ADRP arising from P23H rhodopsin expression at ages that precede photoreceptor degeneration. We have now overexpressed BiP to test the hypothesis that this chaperone promotes the trafficking of P23H rhodopsin to the cell membrane, reprograms the UPR favoring the survival of photoreceptors, blocks apoptosis, and, ultimately, preserves vision in ADRP rats. In cell culture, increasing levels of BiP had no impact on the localization of P23H rhodopsin. However, BiP overexpression alleviated ER stress by reducing levels of cleaved pATF6 protein, phosphorylated eIF2alpha and the proapoptotic protein CHOP. In P23H rats, photoreceptor levels of cleaved ATF6, pEIF2alpha, CHOP, and caspase-7 were much higher than those of wild-type rats. Subretinal delivery of AAV5 expressing BiP to transgenic rats led to reduction in CHOP and photoreceptor apoptosis and to a sustained increase in electroretinogram amplitudes. We detected complexes between BiP, caspase-12, and the BH3-only protein BiK that may contribute to the antiapoptotic activity of BiP. Thus, the preservation of photoreceptor function resulting from elevated levels of BiP is due to suppression of apoptosis rather than to a promotion of rhodopsin folding.
Publication
Journal: Cancer Research
May/22/2007
Abstract
The recent development of hormonal therapy that blocks estrogen synthesis represents a major advance in the treatment of estrogen receptor-positive breast cancer. However, cancer cells often acquire adaptations resulting in resistance. A recent report reveals that estrogen starvation-induced apoptosis of breast cancer cells requires BIK, an apoptotic BH3-only protein located primarily at the endoplasmic reticulum (ER). Searching for novel partners that interact with BIK at the ER, we discovered that BIK selectively forms complex with the glucose-regulated protein GRP78/BiP, a major ER chaperone with prosurvival properties naturally induced in the tumor microenvironment. GRP78 overexpression decreases apoptosis of 293T cells induced by ER-targeted BIK. For estrogen-dependent MCF-7/BUS breast cancer cells, overexpression of GRP78 inhibits estrogen starvation-induced BAX activation, mitochondrial permeability transition, and consequent apoptosis. Further, knockdown of endogenous GRP78 by small interfering RNA (siRNA) sensitizes MCF-7/BUS cells to estrogen starvation-induced apoptosis. This effect was substantially reduced when the expression of BIK was also reduced by siRNA. Our results provide the first evidence that GRP78 confers resistance to estrogen starvation-induced apoptosis in human breast cancer cells via a novel mechanism mediated by BIK. These results further suggest that GRP78 expression level in the tumor cells may serve as a prognostic marker for responsiveness to hormonal therapy based on estrogen starvation and that combination therapy targeting GRP78 may enhance efficacy and reduce resistance.
Publication
Journal: PLoS Medicine
February/14/2007
Abstract
BACKGROUND
Lung cancer is the leading cause of cancer-related death in the United States. Nearly 50% of patients with stages I and II non-small cell lung cancer (NSCLC) will die from recurrent disease despite surgical resection. No reliable clinical or molecular predictors are currently available for identifying those at high risk for developing recurrent disease. As a consequence, it is not possible to select those high-risk patients for more aggressive therapies and assign less aggressive treatments to patients at low risk for recurrence.
RESULTS
In this study, we applied a meta-analysis of datasets from seven different microarray studies on NSCLC for differentially expressed genes related to survival time (under 2 y and over 5 y). A consensus set of 4,905 genes from these studies was selected, and systematic bias adjustment in the datasets was performed by distance-weighted discrimination (DWD). We identified a gene expression signature consisting of 64 genes that is highly predictive of which stage I lung cancer patients may benefit from more aggressive therapy. Kaplan-Meier analysis of the overall survival of stage I NSCLC patients with the 64-gene expression signature demonstrated that the high- and low-risk groups are significantly different in their overall survival. Of the 64 genes, 11 are related to cancer metastasis (APC, CDH8, IL8RB, LY6D, PCDHGA12, DSP, NID, ENPP2, CCR2, CASP8, and CASP10) and eight are involved in apoptosis (CASP8, CASP10, PIK3R1, BCL2, SON, INHA, PSEN1, and BIK).
CONCLUSIONS
Our results indicate that gene expression signatures from several datasets can be reconciled. The resulting signature is useful in predicting survival of stage I NSCLC and might be useful in informing treatment decisions.
Publication
Journal: Oncogene
December/25/1995
Abstract
The survival-promoting activity of the Bcl-2 family of proteins appears to be modulated by interactions between various cellular proteins. We have identified a novel cellular protein, Bik, that interacts with the cellular survival-promoting proteins, Bcl-2 and Bcl-xL, as well as the viral survival-promoting proteins, Epstein Barr virus-BHRF1 and adenovirus E1B-19 kDa. In transient transfection assays, Bik promotes cell death in a manner similar to the death-promoting members of the Bcl-2 family, Bax and Bak. This death-promoting activity of Bik can be suppressed by coexpression of Bcl-2, Bcl-XL, EBV-BHRF1 and E1B-19 kDa proteins suggesting that Bik may be a common target for both cellular and viral anti-apoptotic proteins. While Bik does not show overt homology to the BH1 and BH2 conserved domains characteristic of the Bcl-2 family, it does share a 9 amino acid domain (BH3) with Bax and Bak which may be a critical determinant for the death-promoting activity of these proteins.
Publication
Journal: EMBO Journal
July/11/2005
Abstract
The endoplasmic reticulum (ER) can elicit proapoptotic signalling that results in transmission of Ca(2+) to the mitochondria, which in turn stimulates recruitment of the fission enzyme DRP1 to the surface of the organelle. Here, we show that BH3-only BIK activates this pathway at the ER in intact cells, resulting in mitochondrial fragmentation but little release of cytochrome c to the cytosol. The BIK-induced transformations in mitochondria are dynamic in nature and involve DRP1-dependent remodelling and opening of cristae, where the major stores of cytochrome c reside. This novel function for DRP1 is distinct from its recognized role in regulating mitochondrial fission. Selective permeabilization of the outer membrane with digitonin confirmed that BIK stimulation results in mobilization of intramitochondrial cytochrome c. Of note, BIK can cooperate with a weak BH3-only protein that targets mitochondria, such as NOXA, to activate BAX by a mechanism that is independent of DRP1 enzyme activity. When expressed together, BIK and NOXA cause rapid release of mobilized cytochrome c and activation of caspases.
Publication
Journal: EMBO Journal
February/24/2010
Abstract
In addition to mitochondria, BCL-2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL-2-interacting protein at the ER, nutrient-deprivation autophagy factor-1 (NAF-1)-a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF-1 contains a two iron-two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL-2. NAF-1 is displaced from BCL-2 by the ER-restricted BH3-only protein BIK and contributes to regulation of BIK-initiated autophagy, but not BIK-dependent activation of caspases. Similar to BCL-2, NAF-1 is found in association with the inositol 1,4,5-triphosphate receptor and is required for BCL-2-mediated depression of ER Ca(2+) stores. During nutrient deprivation as a physiological stimulus of autophagy, BCL-2 is known to function through inhibition of the autophagy effector and tumour suppressor Beclin 1. NAF-1 is required in this pathway for BCL-2 at the ER to functionally antagonize Beclin 1-dependent autophagy. Thus, NAF-1 is a BCL-2-associated co-factor that targets BCL-2 for antagonism of the autophagy pathway at the ER.
Publication
Journal: Diabetes
June/27/2001
Abstract
Type 2 diabetes is characterized by insulin resistance and inadequate insulin secretion. In the advanced stages of the disease, beta-cell dysfunction worsens and insulin therapy may be necessary to achieve satisfactory metabolic control. Studies in autopsies found decreased beta-cell mass in pancreas of people with type 2 diabetes. Apoptosis, a constitutive program of cell death modulated by the Bcl family genes, has been implicated in loss of beta-cells in animal models of type 2 diabetes. In this study, we compared the effect of 5 days' culture in high glucose concentration (16.7 mmol/l) versus normal glucose levels (5.5 mmol/l) or hyperosmolar control (mannitol 11 mmol/l plus glucose 5 mmol/l) on the survival of human pancreatic islets. Apoptosis, analyzed by flow cytometry and electron and immunofluorescence microscopy, was increased in islets cultured in high glucose (HG5) as compared with normal glucose (NG5) or hyperosmolar control (NG5+MAN5). We also analyzed by reverse transcriptase-polymerase chain reaction and Western blotting the expression of the Bcl family genes in human islets cultured in normal glucose or high glucose. The antiapoptotic gene Bcl-2 was unaffected by glucose change, whereas Bcl-xl was reduced upon treatment with HG5. On the other hand, proapoptotic genes Bad, Bid, and Bik were overexpressed in the islets maintained in HG5. To define the pancreatic localization of Bcl proteins, we performed confocal immunofluorescence analysis on human pancreas. Bad and Bid were specifically expressed in beta-cells, and Bid was also expressed, although at low levels, in the exocrine pancreas. Bik and Bcl-xl were expressed in other endocrine islet cells as well as in the exocrine pancreas. These data suggest that in human islets, high glucose may modulate the balance of proapoptotic and antiapoptotic Bcl proteins toward apoptosis, thus favoring beta-cell death.
Publication
Journal: Cancer Research
March/19/2000
Abstract
In this study, we have analyzed changes induced by hypoxia at the transcriptional level of genes that could be responsible for a more aggressive phenotype. Using a series of DNA array membranes, we identified a group of hypoxia-induced genes that included plasminogen activator inhibitor-1 (PAI-1), insulin-like growth factor-binding protein 3 (IGFBP-3), endothelin-2, low-density lipoprotein receptor-related protein (LRP), BCL2-interacting killer (BIK), migration-inhibitory factor (MIF), matrix metalloproteinase-13 (MMP-13), fibroblast growth factor-3 (FGF-3), GADD45, and vascular endothelial growth factor (VEGF). The induction of each gene was confirmed by Northern blot analysis in two different squamous cell carcinoma-derived cell lines. We also analyzed the kinetics of PAI-1 induction by hypoxia in more detail because it is a secreted protein that may serve as a useful molecular marker of hypoxia. On exposure to hypoxia, there was a gradual increase in PAI-1 mRNA between 2 and 24 h of hypoxia followed by a rapid decay after 2 h of reoxygenation. PAI-1 levels were also measured in the serum of a small group of head and neck cancer patients and were found to correlate with the degree of tumor hypoxia found in these patients.
Publication
Journal: Journal of Cell Biology
May/16/2001
Abstract
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic members of the Bcl-2 family such as Bax and Bak induce apoptogenic cytochrome c release in isolated mitochondria, whereas BH3-only proteins such as Bid and Bik do not directly target the VDAC to induce cytochrome c release. To investigate the biological significance of the VDAC for apoptosis in mammalian cells, we produced two kinds of anti-VDAC antibodies that inhibited VDAC activity. In isolated mitochondria, these antibodies prevented Bax-induced cytochrome c release and loss of the mitochondrial membrane potential (Deltapsi), but not Bid-induced cytochrome c release. When microinjected into cells, these anti-VDAC antibodies, but not control antibodies, also prevented Bax-induced cytochrome c release and apoptosis, whereas the antibodies did not prevent Bid-induced apoptosis, indicating that the VDAC is essential for Bax-induced, but not Bid-induced, apoptogenic mitochondrial changes and apoptotic cell death. In addition, microinjection of these anti-VDAC antibodies significantly inhibited etoposide-, paclitaxel-, and staurosporine-induced apoptosis. Furthermore, we used these antibodies to show that Bax- and Bak-induced lysis of red blood cells was also mediated by the VDAC on plasma membrane. Taken together, our data provide evidence that the VDAC plays an essential role in apoptogenic cytochrome c release and apoptosis in mammalian cells.
Publication
Journal: EMBO Journal
October/14/1997
Abstract
The Bcl-2 family of proteins regulate apoptosis, some antagonizing cell death and others facilitating it. It has recently been demonstrated that Bcl-2 not only inhibits apoptosis but also restrains cell cycle entry. We show here that these two functions can be genetically dissociated. Mutation of a tyrosine residue within the conserved N-terminal BH4 region had no effect on the ability of Bcl-2 or its closest homologs to enhance cell survival and did not prevent heterodimerization with death-enhancing family members Bax, Bak, Bad and Bik. Neither did this mutation override the growth-inhibitory effect of p53. However, on stimulation with cytokine or serum, starved quiescent cells expressing the mutant proteins re-entered the cell cycle much faster than those expressing comparable levels of wild-type proteins. When wild-type and Y28 mutant Bcl-2 were co-expressed, the mutant was dominant. Although R-Ras p23 has been reported to bind to Bcl-2, no interaction was detectable in transfected cells and R-Ras p23 did not interfere with the ability of Bcl-2 to inhibit apoptosis or cell cycle entry. These observations provide evidence that the anti-apoptotic function of Bcl-2 is mechanistically distinct from its inhibitory influence on cell cycle entry.
Publication
Journal: EMBO Journal
May/28/1997
Abstract
Programmed cell death is essential in organ development and tissue homeostasis and its deregulation is associated with the development of several diseases in mice and humans. The precise mechanisms that control cell death have not been elucidated fully, but it is well established that this form of cellular demise is regulated by a genetic program which is activated in the dying cell. Here we report the identification, cloning and characterization of harakiri, a novel gene that regulates apoptosis. The product of harakiri, Hrk, physically interacts with the death-repressor proteins Bcl-2 and Bcl-X(L), but not with death-promoting homologs, Bax or Bak. Hrk lacks conserved BH1 and BH2 regions and significant homology to Bcl-2 family members or any other protein, except for a stretch of eight amino acids that exhibits high homology with BH3 regions. Expression of Hrk induces cell death which is inhibited by Bcl-2 and Bcl-X(L). Deletion of 16 amino acids including the conserved BH3 region abolished the ability of Hrk to interact with Bcl-2 and Bcl-X(L) in mammalian cells. Moreover, the killing activity of this mutant form of Hrk (Hrk deltaBH3) was eliminated or dramatically reduced, suggesting that Hrk activates cell death at least in part by interacting with and inhibiting the protection afforded by Bcl-2 and Bcl-X(L). Because Hrk lacks conserved BH1 and BH2 domains that define Bcl-2 family members, we propose that Hrk and Bik/Nbk, another BH3-containing protein that activates apoptosis, represent a novel class of proteins that regulate apoptosis by interacting selectively with survival-promoting Bcl-2 and Bcl-X(L).
Publication
Journal: Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
July/30/2012
Abstract
Resveratrol (3,4',5-trans-trihydroxystilbene), a naturally occurring stilbene, is considered to have a number of beneficial effects, including anticancer, anti-aethrogenic, anti-oxidative, anti-inflammatory, anti-microbial and estrogenic activity. Piceatannol (3, 3', 4, 5'-trans-trihydroxystilbene), a naturally occurring hydroxylated analogue of resveratrol, is less studied than resveratrol but displays a wide spectrum of biological activity. Piceatannol has been found in various plants, including grapes, passion fruit, white tea, and Japanese knotweed. Besides antioxidative effects, piceatannol exhibits potential anticancer properties as suggested by its ability to suppress proliferation of a wide variety of tumor cells, including leukemia, lymphoma; cancers of the breast, prostate, colon and melanoma. The growth-inhibitory and proapoptotic effects of piceatannol are mediated through cell-cycle arrest; upregulation of Bid, Bax. Bik, Bok, Fas: P21(WAF1) down-regulation of Bcl-xL; BCL-2, clAP, activation of caspases (-3, -7,- 8, -9), loss of mitochondrial potential, and release of cytochrome c. Piceatannol has been shown to suppress the activation of some transcription factors, including NF-kappaB, which plays a central role as a transcriptional regulator in response to cellular stress caused by free radicals, ultraviolet irradiation, cytokines, or microbial antigens. Piceatannol also inhibits JAK-1, which is a key member of the STAT pathway that is crucial in controlling cellular activities in response to extracellular cytokines and is a COX-2-inducible enzyme involved in inflammation and carcinogenesis. Although piceatannol has been shown to induce apoptosis in cancer cells, there are examples of its anti-apoptotic pro-proliferative activity. Piceatannol inhibits Syk kinase, which plays a crucial role in the coordination of immune recognition receptors and orchestrates multiple downstream signaling pathways in various hematopoietic cells. Piceatannol also binds estrogen receptors and stimulates growth of estrogen-dependent cancer cells. Piceatannol is rapidly metabolized in the liver and is converted mainly to a glucuronide conjugate; however, sulfation is also possible, based on in vitro studies. The pharmacological properties of piceatannol, especially its antitumor, antioxidant, and anti-inflammatory activities, suggests that piceatannol might be a potentially useful nutritional and pharmacological biomolecule; however, more data are needed on its bioavailability and toxicity in humans.
Publication