Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: The Journal of biological chemistry
October/10/2007
Abstract
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.
Publication
Journal: Circulation
February/21/2006
Abstract
BACKGROUND
Liver X receptors (LXRs) are ligand-activated transcription factors involved in the control of lipid metabolism and inflammation. Synthetic LXR agonists have been shown to inhibit the progression of atherosclerosis in mice, but the mechanism is uncertain. LXR agonism upregulates the genes encoding ATP binding cassette transporters A1 (ABCA1) and G1 (ABCG1) in macrophages, thus promoting efflux of cholesterol; it also upregulates liver and intestinal ABCG5 and ABCG8, helping to promote biliary and fecal excretion of cholesterol. Thus, LXR agonism may inhibit atherosclerosis through promotion of reverse cholesterol transport (RCT) in vivo, but this has not been proven. We previously described an in vivo method to trace the movement of cholesterol from 3H-cholesterol-labeled J774 macrophages into plasma, into liver, and ultimately into the bile and feces as free cholesterol or bile acids. In the present study we used this approach to test the hypothesis that administration of the synthetic LXR agonist GW3965 would increase the rate of macrophage RCT in vivo.
RESULTS
Three different mouse models-wild-type C57BL/6 mice, LDLR/apobec-1 double knockout mice, and human apolipoprotein (apo)B/cholesteryl ester transfer protein (CETP) double transgenic mice-were treated with either vehicle or GW3965. Mice were injected intraperitoneally with 3H-cholesterol-labeled and cholesterol-loaded macrophages and monitored for the appearance of 3H-tracer in plasma, liver, and feces. Administration of GW3965 significantly increased the levels of 3H-tracer in plasma and feces in all 3 mouse models.
CONCLUSIONS
These results demonstrate that administration of the LXR agonist GW3965 increases the rate of RCT from macrophages to feces in vivo.
Publication
Journal: The EMBO journal
May/18/2009
Abstract
Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three cohesin protein RAD21-enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)-4alpha and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin-mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes.
Publication
Journal: The Journal of biological chemistry
December/13/2009
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a cell membrane protein that exports excess cholesterol from cells to apolipoprotein (apo) A-I, the major protein in high density lipoproteins. Genetic studies have shown that ABCA1 protects against cardiovascular disease. The interaction of apoA-I with ABCA1 promotes cholesterol removal and activates signaling molecules, such as Janus kinase 2 (JAK2), that optimize the lipid export activity of ABCA1. Here we show that the ABCA1-mediated activation of JAK2 also activates STAT3, which is independent of the lipid transport function of ABCA1. ABCA1 contains two candidate STAT3 docking sites that are required for the apoA-I/ABCA1/JAK2 activation of STAT3. The interaction of apoA-I with ABCA1-expressing macrophages suppressed the ability of lysopolysaccaride to induce the inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, which was reversed by silencing STAT3 or ABCA1. Thus, the apoA-I/ABCA1 pathway in macrophages functions as an anti-inflammatory receptor through activation of JAK2/STAT3. These findings implicate ABCA1 as a direct molecular link between the cardioprotective effects of cholesterol export from arterial macrophages and suppressed inflammation.
Publication
Journal: Arteriosclerosis, thrombosis, and vascular biology
January/3/2005
Abstract
The preferred extracellular acceptor of cell phospholipids and unesterified cholesterol in the process mediated by the ATP-binding cassette A1 (ABCA1) transporter is a monomolecular, prebeta-migrating, lipid-poor or lipid-free form of apolipoprotein (apo) A-I. This monomolecular form of apoA-I is quite distinct from the prebeta-migrating, discoidal high-density lipoprotein (HDL) that contains two or three molecules of apoA-I per particle and which are present as minor components of the HDL fraction in human plasma. The mechanism of the ABCA1-mediated efflux of phospholipid and cholesterol from cells has been studied extensively. In contrast, much less attention has been given to the origin and subsequent metabolism of the acceptor lipid-free/lipid-poor apoA-I. There is a substantial body of evidence from studies conducted in vitro that a monomolecular, lipid-free/lipid-poor form of apoA-I dissociates from HDL during the remodeling of HDLs by plasma factors such as cholesteryl ester transfer protein, hepatic lipase, and phospholipid transfer protein. The rate at which apoA-I dissociates from HDL is influenced by the phospholipid composition of the particles and by the presence of apoA-II. This review describes current knowledge regarding the formation, metabolism, and regulation of monomolecular, lipid-free/lipid-poor apoA-I in plasma.
Publication
Journal: Nucleic acids research
January/8/1985
Abstract
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Publication
Journal: The Journal of rheumatology
September/22/1999
Abstract
OBJECTIVE
To investigate lipid profiles in patients with untreated active rheumatoid arthritis (RA) and to assess the relationship of the inflammatory condition of RA with lipid profiles.
METHODS
Forty-two patients with RA and 42 age and sex matched healthy controls were studied. Patients with RA had not been treated with corticosteroid or disease modifying antirheumatic drugs prior to the study. Total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol, apolipoprotein A1 (apo A1), apolipoprotein B (apo B), lipoprotein(a) [Lp(a)], and C-reactive protein (CRP) were measured in both groups.
RESULTS
The levels of <em>apo</em> <em>A1</em> and HDL-cholesterol were significantly lower in patients than in controls (128.5 vs. 151.8 mg/dl, 41.2 vs. 54.9 mg/dl, respectively). The level of Lp(a) was significantly higher in patients than in controls (27.1 vs. 18.0 mg/dl). The ratios of <em>apo</em> B/<em>apo</em> <em>A1</em>, total cholesterol/HDL-cholesterol, and LDL-cholesterol/HDL-cholesterol were significantly higher in patients than in controls (0.82 vs. 0.67, 4.4 vs. 3.4, 2.8 vs. 1.9, respectively). CRP showed a significant correlation with <em>apo</em> <em>A1</em> (r = -0.44, p<0.01) and HDL-cholesterol (r = -0.35, p<0.05).
CONCLUSIONS
Our study suggests that patients with untreated active RA have altered lipoprotein and apolipoprotein patterns that may possibly expose them to higher risk of atherosclerosis. The inflammatory condition of RA may affect the metabolism of HDL-cholesterol and apo A1.
Publication
Journal: Arteriosclerosis, thrombosis, and vascular biology
August/9/2010
Abstract
OBJECTIVE
Type 2 diabetes is characterized by impaired beta-cell secretory function, insulin resistance, reduced high-density lipoprotein (HDL) levels, and increased cardiovascular risk. Given the current interest in therapeutic interventions that raise HDLs levels, this study investigates the effects of HDLs on insulin secretion from beta-cells.
RESULTS
Incubation of Min6 cells and primary islets under basal or high-glucose conditions with either apolipoprotein (apo) A-I or apoA-II in the lipid-free form, as a constituent of discoidal reconstituted HDLs (rHDLs), or with HDLs isolated from human plasma increased insulin secretion up to 5-fold in a calcium-dependent manner. The increase was time and concentration dependent. It was also K(ATP) channel and glucose metabolism dependent under high-glucose, but not low-glucose, conditions. The lipid-free apolipoprotein-mediated increase in insulin secretion was ATP binding cassette (ABC) transporter A1 and scavenger receptor-B1 dependent. The rHDL-mediated increase in insulin secretion was ABCG1 dependent. Exposure of beta-cells to lipid-free apolipoproteins also increased insulin mRNA expression and insulin secretion without significantly depleting intracellular insulin or cholesterol levels.
CONCLUSIONS
These results establish that lipid-free and lipid-associated apoA-I and apoA-II increase beta-cell insulin secretion and indicate that interventions that raise HDLs levels may be beneficial in type 2 diabetes.
Publication
Journal: Biochemistry
June/13/2001
Abstract
The phosphodiesterase A1 protein of Acetobacter xylinum, AxPDEA1, is a key regulator of bacterial cellulose synthesis. This phosphodiesterase linearizes cyclic bis(3'->>5')diguanylic acid, an allosteric activator of the bacterial cellulose synthase, to the ineffectual pGpG. Here we show that AxPDEA1 contains heme and is regulated by reversible binding of O(2) to the heme. Apo-AxPDEA1 has less than 2% of the phosphodiesterase activity of holo-AxPDEA1, and reconstitution with hemin restores full activity. O(2) regulation is due to deoxyheme being a better activator than oxyheme. AxPDEA1 is homologous to the Escherichia coli direct oxygen sensor protein, EcDos, over its entire length and is homologous to the FixL histidine kinases over only a heme-binding PAS domain. The properties of the heme-binding domain of AxPDEA1 are significantly different from those of other O(2)-responsive heme-based sensors. The rate of AxPDEA1 autoxidation (half-life>> 12 h) is the slowest observed so far for this type of heme protein fold. The O(2) affinity of AxPDEA1 (K(d) approximately 10 microM) is comparable to that of EcDos, but the rate constants for O(2) association (k(on) = 6.6 microM(-)(1) s(-)(1)) and dissociation (k(off) = 77 s(-)(1)) are 2000 times higher. Our results illustrate the versatility of signal transduction mechanisms for the heme-PAS class of O(2) sensors and provide the first example of O(2) regulation of a second messenger.
Publication
Journal: Circulation. Cardiovascular genetics
March/1/2010
Abstract
BACKGROUND
Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.
RESULTS
We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.
CONCLUSIONS
Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Publication