Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(517)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Genetics
July/5/2015
Abstract
Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.
Publication
Journal: Gastroenterology
September/27/2004
Abstract
OBJECTIVE
Because the mechanisms leading to bile duct damage in sclerosing cholangitis are unknown, we aimed to determine the pathogenesis of bile duct injury in multidrug resistance gene (Mdr2) (Abcb4) knockout mice (Mdr2(-/-)) as a novel model of the disease.
METHODS
Mdr2(-/-) and wild-type controls (Mdr2(+/+)) were studied at 2, 4, and 8 weeks of age. Liver histology, ultrastructure, immunofluorescence microscopy (to study inflammatory cells, tight junction protein ZO-1, basement membrane protein laminin, fluorescence-labeled ursodeoxycholic acid), immunohistochemistry (for alpha-smooth muscle actin, nitrotyrosine), sirius red staining, bacterial cultures of intra-abdominal organs, and polymerase chain reaction (PCR) for Helicobacter bilis DNA were compared between both genotypes. Hepatic cytokine expression was determined by reverse-transcription PCR.
RESULTS
Bile ducts of Mdr2(-/-) showed disrupted tight junctions and basement membranes, bile acid leakage into portal tracts, induction of a portal inflammatory (CD11b, CD4-positive) infiltrate, and activation of proinflammatory (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta) and profibrogenic cytokines (transforming growth factor [TGF]-beta1). This resulted in activation of periductal myofibroblasts, leading to periductal fibrosis, separating the peribiliary plexus from bile duct epithelial cells and, finally, causing atrophy and death of the bile duct epithelium. Bacterial translocation was not increased and H. bilis was not detectable in Mdr2(-/-).
CONCLUSIONS
Sclerosing cholangitis in Mdr2(-/-) mice is a multistep process with regurgitation of bile from leaky ducts into the portal tracts, leading to induction of periductal inflammation, followed by activation of periductal fibrogenesis, finally causing obliterative cholangitis owing to atrophy and death of bile duct epithelial cells.
Publication
Journal: Journal of Clinical Oncology
June/28/2012
Abstract
OBJECTIVE
Anthracycline-induced cardiotoxicity (ACT) is a serious adverse drug reaction limiting anthracycline use and causing substantial morbidity and mortality. Our aim was to identify genetic variants associated with ACT in patients treated for childhood cancer.
METHODS
We carried out a study of 2,977 single-nucleotide polymorphisms (SNPs) in 220 key drug biotransformation genes in a discovery cohort of 156 anthracycline-treated children from British Columbia, with replication in a second cohort of 188 children from across Canada and further replication of the top SNP in a third cohort of 96 patients from Amsterdam, the Netherlands.
RESULTS
We identified a highly significant association of a synonymous coding variant rs7853758 (L461L) within the SLC28A3 gene with ACT (odds ratio, 0.35; P = 1.8 × 10(-5) for all cohorts combined). Additional associations (P < .01) with risk and protective variants in other genes including SLC28A1 and several adenosine triphosphate-binding cassette transporters (ABCB1, ABCB4, and ABCC1) were present. We further explored combining multiple variants into a single-prediction model together with clinical risk factors and classification of patients into three risk groups. In the high-risk group, 75% of patients were accurately predicted to develop ACT, with 36% developing this within the first year alone, whereas in the low-risk group, 96% of patients were accurately predicted not to develop ACT.
CONCLUSIONS
We have identified multiple genetic variants in SLC28A3 and other genes associated with ACT. Combined with clinical risk factors, genetic risk profiling might be used to identify high-risk patients who can then be provided with safer treatment options.
Publication
Journal: Gastroenterology
September/1/2008
Abstract
OBJECTIVE
Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040.
METHODS
Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro.
RESULTS
alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis.
CONCLUSIONS
Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.
Publication
Journal: Journal of Hepatology
March/20/2006
Abstract
OBJECTIVE
Mdr2 (Abcb4)-/- mice develop hepatic lesions resembling primary sclerosing cholangitis. Our aim was to characterize the evolution of fibrosis in Mdr2-/- mice.
METHODS
Mdr2-/-mice and their wild-type littermates were sacrificed at 2, 4 and 8 weeks after birth. Hepatic collagen was determined biochemically. Fibrosis related transcript levels were quantified from livers by real-time RT-PCR, and MMP activities determined by substrate assays. Liver histology was assessed by connective tissue staining and immunohistochemistry for alpha-smooth muscle actin (alpha-SMA).
RESULTS
Mdr2-/- mice demonstrated a time-dependent increase of relative and total hepatic collagen (fivefold at 8 weeks, compared to wildtype controls), and maximal alpha-SMA immunoreactivity at 4 weeks. Compared to wildtype controls profibrogenic mRNA levels for procollagen alpha1(I), TGFbeta1, TGFbeta2, MMP-2 and -13, TIMP-1, PDGFbeta receptor, and PAI-1 were upregulated up to 27-fold. Most transcripts peaked at 4 weeks, but procollagen alpha1(I) mRNA increased steadily, TIMP-1 mRNA was constantly elevated (20-fold), MMP-13 mRNA was suppressed and interstitial collagenase and gelatinase activities were downregulated.
CONCLUSIONS
Mdr2-/- mice spontaneously progress to severe biliary fibrosis. This is due to a characteristic temporal pattern of upregulated profibrogenic and downregulated fibrolytic genes and activities. These mice are an attractive model to test potential antifibrotics for the treatment of (biliary) liver fibrosis.
Publication
Journal: Gastroenterology
April/12/2006
Abstract
OBJECTIVE
Current therapy for primary sclerosing cholangitis is of limited efficacy. Multidrug resistance gene 2 knockout mice (Mdr2(-/-)) represent a well-characterized model for sclerosing cholangitis. Experiments were performed to test in such mice the therapeutic effects of 24-norUrsodeoxycholic acid, a C(23) homologue of ursodeoxycholic acid with 1 fewer methylene group in its side chain.
METHODS
Mdr2(-/-) mice were fed a diet containing 24-norUrsodeoxycholic acid (0.5% wt/wt) or ursodeoxycholic acid (0.5% wt/wt) as a clinical comparator for 4 weeks; controls received standard chow. Effects on serum liver tests, liver histology, markers of inflammation and fibrosis, and bile acid transport and metabolism were compared. 24-norUrsodeoxycholic acid metabolism was studied in serum, liver, bile, and urine.
RESULTS
24-norUrsodeoxycholic acid markedly improved liver tests and liver histology and significantly reduced hydroxyproline content and the number of infiltrating neutrophils and proliferating hepatocytes and cholangiocytes. 24-norUrsodeoxycholic acid underwent extensive phase I/II metabolism (hydroxylation, sulfation, and glucuronidation), thereby increasing the hydrophilicity of biliary bile acid secretion. There was a coordinated induction of bile acid detoxifying enzymes (Cyp2b10, Cyp3a11, and Sult2a1) and efflux pumps (Mrp3 and Mrp4). Ursodeoxycholic acid, in contrast, increased alanine transaminase and alkaline phosphatase levels, had no significant effects on hydroxyproline content, and induced biliary transporters and detoxification enzymes to a much smaller extent than 24-norUrsodeoxycholic acid.
CONCLUSIONS
24-norUrsodeoxycholic acid ameliorates sclerosing cholangitis in Mdr2(-/-) mice. Its therapeutic mechanisms involve (1) increasing the hydrophilicity of biliary bile acids, (2) stimulating bile flow with flushing of injured bile ducts, and (3) inducing detoxification and elimination routes for bile acids.
Publication
Journal: Plant Journal
July/28/2009
Abstract
Heterologous expression systems based on tobacco BY-2 cells, Arabidopsis cell cultures, Xenopus oocytes, Saccharomyces cerevisiae, and human HeLa cells have been used to express and characterize PIN, ABCB (PGP), and AUX/LAX auxin transporters from Arabidopsis. However, no single system has been identified that can be used for effective comparative analyses of these proteins. We have developed an accessible Schizosaccharomyces pombe system for comparative studies of plant transport proteins. The system includes knockout mutants in all ABC and putative auxin transport genes and Gateway((R))-compatible expression vectors for functional analysis and subcellular localization of recombinant proteins. We expressed Arabidopsis ABCB1 and ABCB19 in mam1pdr1 host lines under the inducible nmt41 promoter. ABCB19 showed a higher (3)H-IAA export activity than ABCB1. Arabidopsis PIN proteins were expressed in a mutant lacking the auxin effluxer like 1 (AEL1) gene. PIN1 showed higher activity than PIN2 with similar protein expression levels. Expression of AUX1 in a permease-deficient vat3 mutant resulted in increased net auxin uptake activity. Finally, ABCB4 expressed in mam1pdr1 displayed a concentration-dependent reversal of (3)H-IAA transport that is consistent with its observed activity in planta. Structural modelling suggests that ABCB4 has three substrate interaction sites rather than the two found in ABCB19, thus providing a rationale for the observed substrate activation. Taken together, these results suggest that the S. pombe system described here can be employed for comparative analyses and subsequent structural characterizations of plant transport proteins.
Publication
Journal: Mutagenesis
May/16/2012
Abstract
Worldwide, colorectal cancer (CRC) is the third most common cancer, with the highest mortality rates occurring in Central Europe. The use of chemotherapy to treat CRC is limited by the inter-individual variability in drug response and the development of cancer cell resistance. ATP-binding cassette (ABC) transporters play a crucial role in the development of resistance by the efflux of anticancer agents outside of cancer cells. The aim of this study was to explore transcript levels of all human ABCs in tumours and non-neoplastic control tissues from CRC patients collected before the first line of treatment by 5-fluorouracil (5-FU)-containing regimen. The prognostic potential of ABCs was evaluated by the correlation of transcript levels with clinical factors. Relations between transcript levels of ABCs in tumours and chemotherapy efficacy were also addressed. The transcript profile of all known human ABCs was assessed using real-time polymerase chain reaction with a relative standard curve. The majority of the studied ABCs were down-regulated or unchanged between tumours and control tissues. ABCA12, ABCA13, ABCB6, ABCC1, ABCC2 and ABCE1 were up-regulated in tumours versus control tissues. Transcript levels of ABCA12, ABCC7 and ABCC8 increased in direction from colon to rectum. Additionally, transcript levels of ABCB9, ABCB11, ABCG5 and ABCG8 followed the reverse significant trend, i.e. a decrease in direction from colon to rectum. The transcript level of ABCC10 in tumours correlated with the grade (P = 0.01). Transcript levels of ABCC6, ABCC11, ABCF1 and ABCF2 were significantly lower in non-responders to palliative chemotherapy in comparison with responders. The disease-free interval of patients treated by adjuvant chemotherapy was significantly shorter in patients with low transcript levels of ABCA7, ABCA13, ABCB4, ABCC11 and ABCD4. In conclusion, ABCC11 may be a promising candidate marker for a validation study on 5-FU therapy outcome.
Publication
Journal: Journal of Hepatology
June/18/2008
Abstract
OBJECTIVE
The integrin alphavbeta6 promotes proliferation of specialized epithelia and acts as a receptor for the activation of latent TGFbeta1. We studied alphavbeta6 expression in experimental and human liver fibrosis and the potential of its pharmacological inhibition for treatment of hepatic fibrosis.
METHODS
alphavbeta6 expression was studied by quantitative PCR and immunohistochemistry in rats with cirrhosis due to bile duct ligation (BDL), administration of thioacetamide (TAA), in Mdr2(Abcb4)(-/-) mice with spontaneous biliary fibrosis, and in livers of patients with chronic hepatitis C (n=79) and end-stage liver disease due to various etiologies (n=18). The effect of a selective alphavbeta6 inhibitor was evaluated in Mdr2(Abcb4)(-/-) mice with ongoing fibrogenesis.
RESULTS
Integrin beta6 mRNA increased with fibrosis stage in hepatitis C and was upregulated between 25- and 100-fold in TAA- and BDL-induced cirrhosis, in Mdr2(Abcb4)(-/-) mice and in human end-stage liver disease. alphavbeta6 protein was absent in normal livers and expressed de novo on (activated) bile duct epithelia and transitional hepatocytes. A single dose of the alphavbeta6 inhibitor injected into Mdr2(Abcb4)(-/-) mice significantly induced profibrolytic matrix metalloproteinases (MMP)-8 and -9 after 3 h, with a corresponding increase in extracellular matrix-degrading activities. In parallel profibrogenic transcripts (procollagen alpha1(I), TGFbeta2, and MMP-2) showed a trend of downregulation.
CONCLUSIONS
(1) Integrin alphavbeta6 is induced de novo in rodent and human liver fibrosis, where it is expressed on activated bile duct epithelia and (transitional) hepatocytes during fibrosis progression. (2) In vivo a single dose of a small molecule alphavbeta6 inhibitor induced antifibrogenic and profibrolytic genes and activities, suggesting alphavbeta6 is a unique target for treatment of liver fibrosis.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/4/2005
Abstract
Hepatocytes polarize by forming functionally distinct sinusoidal (basolateral) and canalicular (apical) plasma membrane domains. Two distinct routes are used for delivery of membrane proteins to the canaliculus. Proteins having glycosylphosphatidylinositol anchors or single transmembrane domains are targeted to the sinusoidal plasma membrane from where they transcytose to the canalicular domain. In contrast, apical ATP-binding-cassette (ABC) transporters, which are required for energy-dependent biliary secretion of bile acids (ABCB11), phospholipids (ABCB4), and nonbile acid organic anions (ABCC2), lack initial residence in the basolateral plasma membrane and traffic directly from Golgi membranes to the canalicular membrane. While investigating mechanisms of apical targeting in WIF-B9 cells, a polarized hepatic epithelial cell line, we observed that rab11a is required for canalicular formation. Knockdown of rab11a or overexpression of the rab11a-GDP locked form prevented canalicular formation as did overexpression of the myosin Vb motorless tail domain. In WIF-B9 cells, which lack bile canaliculi, apical ABC transporters colocalized with transcytotic membrane proteins in rab11a-containing endosomes and, unlike the transcytotic markers, did not distribute to the plasma membrane. We propose that polarization of hepatocytes (i.e., canalicular biogenesis) requires recruitment of rab11a and myosin Vb to intracellular membranes that contain apical ABC transporters and transcytotic markers, permitting their targeting to the plasma membrane. In this model, polarization is initiated upon delivery of rab11a-myosin Vb-containing membranes to the surface, which causes plasma membrane at the site of delivery to differentiate into apical domain (bile canaliculus).
Publication
Journal: PLoS Neglected Tropical Diseases
September/27/2012
Abstract
BACKGROUND
Pyrethroid insecticides are widely utilized in dengue control. However, the major vector, Aedes aegypti, is becoming increasingly resistant to these insecticides and this is impacting on the efficacy of control measures. The near complete transcriptome of two pyrethroid resistant populations from the Caribbean was examined to explore the molecular basis of this resistance.
RESULTS
Two previously described target site mutations, 1016I and 1534C were detected in pyrethroid resistant populations from Grand Cayman and Cuba. In addition between two and five per cent of the Ae. aegypti transcriptome was differentially expressed in the resistant populations compared to a laboratory susceptible population. Approximately 20 per cent of the genes over-expressed in resistant mosquitoes were up-regulated in both Caribbean populations (107 genes). Genes with putative monooxygenase activity were significantly over represented in the up-regulated subset, including five CYP9 P450 genes. Quantitative PCR was used to confirm the higher transcript levels of multiple cytochrome P450 genes from the CYP9J family and an ATP binding cassette transporter. Over expression of two genes, CYP9J26 and ABCB4, is due, at least in part, to gene amplification.
CONCLUSIONS
These results, and those from other studies, strongly suggest that increases in the amount of the CYP9J cytochrome P450s are an important mechanism of pyrethroid resistance in Ae. aegypti. The genetic redundancy resulting from the expansion of this gene family makes it unlikely that a single gene or mutation responsible for pyrethroid resistance will be identified in this mosquito species. However, the results from this study do pave the way for the development of new pyrethroid synergists and improved resistance diagnostics. The role of copy number polymorphisms in detoxification and transporter genes in providing protection against insecticide exposure requires further investigation.
Publication
Journal: Journal of Neurochemistry
March/13/2008
Abstract
The brain is lipid-rich compared to other organs and although previous studies have highlighted the importance of ATP-binding cassette (ABC) transporters in the regulation of lipid transport across membranes in peripheral tissues, very little is known regarding ABC transporter function in the CNS. In this study, we bring together recent literature focusing on potential roles for ABC transporters in brain lipid transport and, where appropriate, identify possible links between ABC transporters, lipid transport and neurological disease. Of the 48 transcriptionally active ABC transporters in the human genome, we have focused on 13 transporters (ABCA1, ABCA2, ABCA3, ABCA4, ABCA7 and ABCA8; ABCB1 and ABCB4; ABCD1 and ABCD2; ABCG1, ABCG2, and ABCG4) for which there is evidence suggesting they may contribute in some way to brain lipid transport or homeostasis. The transporters are discussed in terms of their location within brain regions and brain cell types and, where possible, in terms of their known functions and established or proposed association with human neurological diseases. Specific examples of novel treatment strategies for diseases, such as Alzheimer's disease and X-linked adrenoleukodystrophy that are based on modulation of ABC transporter function are discussed and we also examine possible functions for specific ABC transporters in human brain development.
Publication
Journal: Pharmacogenetics and Genomics
May/30/2007
Abstract
OBJECTIVE
Increasing evidence suggests that a genetically determined functional impairment of the hepatocellular efflux transporters bile salt export pump (BSEP, ABCB11) and multidrug resistance protein 3 (MDR3, ABCB4) play a pathophysiological role in the development of drug-induced liver injury. The aim of this study was therefore to describe the extent of genetic variability in ABCB11 and ABCB4 in patients with drug-induced liver injury and to in vitro functionally characterize newly detected ABCB11 mutations and polymorphisms.
METHODS
ABCB11 and ABCB4 were sequenced in 23 patients with drug-induced cholestasis and 13 patients with drug-induced hepatocellular injury. Ninety-five healthy Caucasians served as the control group. Reference and mutant BSEP were expressed in Sf9 cells and ATP-dependent transport of [H]-taurocholate was measured in a rapid filtration assay.
RESULTS
Four highly conserved nonsynonymous mutations were specific for drug-induced liver injury [ABCB11: D676Y (drug-induced cholestasis) and G855R (drug-induced cholestasis); ABCB4: I764L (drug-induced cholestasis) and L1082Q (drug-induced hepatocellular injury)]. Furthermore, a polymorphism in exon 13 of ABCB11 (V444A), which is associated with decreased hepatic BSEP expression was significantly more frequent in drug-induced cholestasis patients than in drug-induced hepatocellular injury patients and healthy controls (76 versus 50 and 59% in drug-induced cholestasis patients, drug-induced hepatocellular injury patients and healthy controls, respectively; P<0.05). The in-vitro transport activity of the V444A and the D676Y BSEP constructs was similar, whereas the G855R mutation was nonfunctional.
CONCLUSIONS
In summary, our data support a role of ABCB11 and ABCB4 mutations and polymorphisms in drug-induced cholestasis. Genotyping of selected patients with acquired cholestasis might help to identify individuals with a genetic predisposition.
Publication
Journal: Pharmacogenetics
September/29/2004
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder associated with increased risk of intrauterine fetal death and prematurity. There is increasing evidence that genetically determined dysfunction in the canalicular ABC transporters bile salt export pump (BSEP, ABCB11) and multidrug resistance protein 3 (MDR3, ABCB4) might be risk factors for ICP development. This study aimed to (i). describe the extent of genetic variability in BSEP and MDR3 in ICP and (ii). identify new disease-causing mutations. Twenty-one women with ICP and 40 women with uneventful pregnancies were recruited between April 2001 and April 2003. Sequencing of BSEP and MDR3 spanned 8-10 kb per gene and comprised the promoter region and 100-350 bp of the flanking intronic region around each exon. DNA sequencing of polymerase chain reaction fragments was performed on an ABI3700 capillary sequencer. MDR3 promoter activity of promoter constructs carrying different ICP-specific mutations was studied using reporter assays. A total of 37 and 51 variant sites were detected in BSEP and MDR3, respectively. Three non-synonymous sites in codons for evolutionarily conserved amino acids were specific for the ICP collective (BSEP, N591S; MDR3, S320F and G762E). Furthermore, four ICP-specific splicing mutations were detected in MDR3 [intron 21, G(+1)A; intron 25, G(+5)C and C(-3)G; and intron 26, T(+2)A]. Activity of the mutated MDR3 promoter was similar to that observed for the wild-type promoter. Our data further support an involvement of MDR3 genetic variation in the pathogenesis of ICP, whereas analysis of BSEP sequence variation indicates that this gene is probably less important for the development of pregnancy-associated cholestasis.
Publication
Journal: Pflugers Archiv European Journal of Physiology
August/12/2007
Abstract
Like several other ATP-binding cassette (ABC) transporters, ABCB4 is a lipid translocator. It translocates phosphatidylcholine (PC) from the inner to the outer leaflet of the canalicular membrane of the hepatocyte. Its function is quite crucial as evidenced by a severe liver disease, progressive familial intrahepatic cholestasis type 3, which develops in persons with ABCB4 deficiency. Translocation of PC makes the phospholipid available for extraction into the canalicular lumen by bile salts. The primary function of biliary phospholipid excretion is to protect the membranes of cells facing the biliary tree against these bile salts: the uptake of PC in bile salt micelles reduces the detergent activity of these micelles. In this review, we will discuss the functional aspects of ABCB4 and the regulation of its expression. Furthermore, we will describe the clinical and biochemical consequences of complete and partial deficiency of ABCB4 function.
Publication
Journal: Pharmacological Research
August/31/2009
Abstract
While P-glycoprotein (PGP, ABCB1) is known to play an important role in drug exclusion at the blood brain barrier (BBB), less is known about the contribution of other members in the ATP-binding cassette (ABC) transporter family to BBB drug efflux, or whether these transporters are expressed differently in humans and in mammalian species of pharmacological interest. We used quantitative real-time PCR to determine mRNA expression levels for the majority of ABC family members in brain and in isolated brain microvessel endothelial capillary cells (BMEC) from human, rat, mouse, pig and cow. We confirmed BBB expression of several well-characterized ABC family members that are implicated in xenobiotic exclusion from the brain, including ABCB1 (PGP), ABCG2 (BCRP), ABCC1 (MRP1), ABCC4 (MRP4), and ABCC5 (MRP5). In addition, we detected high expression and enrichment in BMEC of several less well-characterized ABC transporters in one or more species, including ABCA2-4, ABCB4, ABCB6-8, ABCB10, ABCC3, ABCC6, ABCC10, and ABCE1. We also uncovered species differences in the expression of a number of transporters, including ABCG2 and ABCC4. This study identifies several additional ABC family members that may contribute to xenobiotic efflux at the human BBB, and compares the expression of a broad array of efflux transporters between human and four other species relevant to pharmacological research.
Publication
Journal: Seminars in Liver Disease
April/2/2007
Abstract
Because ATP-binding cassette (ABC) transporters are important for normal bile secretion, hereditary and acquired ABC transporter defects play a central role in the pathogenesis of cholestasis. Defects of the phospholipid export pump MDR3 ( ABCC4) result in impaired biliary excretion of phosphatidylcholine and a variety of cholestatic syndromes ranging from progressive familial intrahepatic cholestasis in neonates to biliary cirrhosis in adults. Moreover, MDR3 mutations predispose to cholestasis of pregnancy and drug-induced cholestasis. Because MDR2 (rodent orthologue of human MDR3) knockout mice develop sclerosing cholangitis, it is attractive to speculate that MDR3 defects could also play an important role in cholangiopathies in humans. Indeed, MDR3 variants could play a role as modifier gene in primary biliary cirrhosis and primary sclerosing cholangitis, but their exact role needs further clarification. Impaired biliary phosphatidylcholine excretion has also been reported in total parenteral nutrition-induced cholestasis and bile duct injury following liver transplantation, but a genetic basis for these findings remains to be explored. Several drugs for the treatment of cholestatic liver diseases target MDR3 expression and function, further underscoring the clinical significance of this transport system.
Publication
Journal: Human Molecular Genetics
June/22/2000
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy with serious consequences for the mother and fetus. Two pedigrees have been reported with ICP in the mothers of children with a subtype of autosomal recessive progressive familial intrahepatic cholestasis (PFIC) with raised serum gamma-glutamyl transpeptidase (gamma-GT). Affected children have homozygous mutations in the MDR3 gene (also called ABCB4 ), and heterozygous mothers have ICP. More frequently, however, ICP occurs in women with no known family history of PFIC and the genetic basis of this disorder is unknown. We investigated eight women with ICP and raised serum gamma-GT, but with no known family history of PFIC. DNA sequence analysis revealed a C to A transversion in codon 546 in exon 14 of MDR3 in one patient, which results in the missense substitution of the wild-type alanine with an aspartic acid. We performed functional studies of this mutation introduced into MDR1, a closely related homologue of MDR3. Fluorescence activated cell sorting (FACS) and western analysis indicated that this missense mutation causes disruption of protein trafficking with a subsequent lack of functional protein at the cell surface. The demonstration of a heterozygous missense mutation in the MDR3 gene in a patient with ICP with no known family history of PFIC, analysed by functional studies, is a novel finding. This shows that MDR3 mutations are responsible for the additional phenotype of ICP in a subgroup of women with raised gamma-GT.
Publication