Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Clinical Cancer Research
December/15/2013
Abstract
OBJECTIVE
Patients with triple-negative breast cancer (TNBC) and residual disease after neoadjuvant chemotherapy generally have worse outcome; however, some patients with residual tumor after neoadjuvant chemotherapy do not relapse. We hypothesize that there are subgroups of patients with chemoresistant TNBC with different prognosis.
METHODS
Forty-nine chemoresistant cases from 111 patients with TNBC treated with neoadjuvant chemotherapy (M.D. Anderson Cancer Center, Houston, TX) constituted the discovery cohort, and 25 chemoresistant samples from 47 neoadjuvant chemotherapy-treated TNBC (The Methodist Hospital, Houston, TX) were chosen for validation. Extended validation was carried out in 269 operable TNBC predicted to be chemoresistant by expression pattern from published datasets.
RESULTS
We established a seven-gene prognostic signature using dChip and gene set enrichment analyses. In the independent validation cohort, the classifier predicted correctly with positive predictive value of 75.0% and negative predictive value (i.e., relapse-free survival; RFS) of 76.9% at 3 years. Those predicted to relapse had a HR of 4.67 [95% confidence interval (CI): 1.27-17.15] for relapse in 3 years. In extended validation, patients predicted not to relapse exhibited 3-year RFS of 78.9%, whereas the 3-year RFS was 48.5% for patients predicted to relapse, with HR of 2.61 (95% CI: 1.52-4.49). The TNBC subgroup that predicted to have relatively favorable prognosis was characterized by high expression of "luminal-like" genes [androgen-receptor (AR) and GATA3], whereas the subgroup with worse prognosis was characterized by expression of cancer stem-cell markers.
CONCLUSIONS
We developed a clinically relevant signature for patients with chemoresistant TNBC. For these women, new therapeutic strategies like targeting AR activation or cancer stem cells may need to be developed.
Publication
Journal: Annual Review of Immunology
December/29/2015
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Publication
Journal: PLoS Genetics
January/3/2011
Abstract
Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification.
Publication
Journal: Molecular and Cellular Biology
December/23/1998
Abstract
Previously, we have shown that TAL1 and the LIM-only protein gene (LMO) are regularly coactivated in T-cell acute lymphoblastic leukemia (T-ALL). This observation is likely to relate to the findings that TAL1 and LMO are highly synergistic in T-cell tumorigenesis in double-transgenic mice. To understand the molecular mechanisms of functional synergy between TAL1 and LMO in tumorigenesis and transcriptional regulation, we tried to identify downstream target genes regulated by TAL1 and LMO by a subtractive PCR method. One of the isolated genes, that for retinaldehyde dehydrogenase 2 (RALDH2), was regularly expressed in most of the T-ALL cell lines that coexpressed TAL1 and LMO. Exogenously transfected TAL1 and LMO, but not either alone, induced RALDH2 expression in a T-ALL cell line, HPB-ALL, not expressing endogeneous TAL1 or LMO. The RALDH2 transcripts in T-ALL were, however, mostly initiated within the second intron. Promoter analysis revealed that a GATA site in a cryptic promoter in the second intron was essential and sufficient for the TAL1- and LMO-dependent transcriptional activation, and GATA3 binds to this site. In addition, forced expression of GATA3 potentiated the induction of RALDH2 by TAL1 and LMO, and these three factors formed a complex in vivo. Furthermore, a TAL1 mutant not binding to DNA also activated the transcription of RALDH2 in the presence of LMO and GATA3. Collectively, we have identified the RALDH2 gene as a first example of direct transcriptional target genes regulated by TAL1 and LMO in T-ALL. In this case, TAL1 and LMO act as cofactors for GATA3 to activate the transcription of RALDH2.
Publication
Journal: Development (Cambridge)
April/27/2004
Abstract
Distinct classes of serotonergic (5-HT) neurons develop along the ventral midline of the vertebrate hindbrain. Here, we identify a Sonic hedgehog (Shh)-regulated cascade of transcription factors that acts to generate a specific subset of 5-HT neurons. This transcriptional cascade is sufficient for the induction of rostral 5-HT neurons within rhombomere 1 (r1), which project to the forebrain, but not for the induction of caudal 5-HT neurons, which largely terminate in the spinal cord. Within the rostral hindbrain, the Shh-activated homeodomain proteins Nkx2.2 and Nkx6.1 cooperate to induce the closely related zinc-finger transcription factors Gata2 and Gata3. Gata2 in turn is necessary and sufficient to activate the transcription factors Lmx1b and Pet1, and to induce 5-HT neurons within r1. In contrast to Gata2, Gata3 is not required for the specification of rostral 5-HT neurons and appears unable to substitute for the loss of Gata2. Our findings reveal that the identity of closely related 5-HT subclasses occurs through distinct responses of adjacent rostrocaudal progenitor domains to broad ventral inducers.
Publication
Journal: Nature Neuroscience
July/19/2004
Abstract
The transcriptional control of the differentiation of central serotonergic (5-HT) neurons in vertebrates has recently come under scrutiny and has been shown to involve the homeobox genes Nkx2-2 and Lmx1b, the Ets-domain gene Pet1 (also known as Fev) and the zinc-finger gene Gata3. The basic helix-loop-helix (bHLH) gene Ascl1 (also known as Mash1) is coexpressed with Nkx2-2 in the neuroepithelial domain of the hindbrain, which gives rise to 5-HT neurons. Here we show in the mouse that Ascl1 is essential for the birth of 5-HT neurons, both as a proneural gene for the production of postmitotic neuronal precursors and as a determinant of the serotonergic phenotype for the parallel activation of Gata3, Lmx1b and Pet1. Thus Ascl1, which is essential for noradrenergic differentiation, is also a determinant of the serotonergic phenotype.
Publication
Journal: Development (Cambridge)
March/15/2012
Abstract
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Publication
Journal: International Immunology
February/8/2012
Abstract
T lymphocytes, which are central players in orchestrating immune responses, consist of several subtypes with distinct functions. The thymus is an organ where hematopoietic progenitors undergo sequential developmental processes to give rise to this variety of T-cell subsets with diverse antigen specificity. In the periphery, naive T cells further differentiate into effector cells upon encountering antigens. There are several developmental checkpoints during T-cell development, where regulation by a combination of transcription factors imprints specific functional properties on precursors. The transcription factors E2A, GATA-binding protein 3 (Gata3) and RUNT-related transcription factor (Runx) are involved at various stages in the differentiation of double-negative thymocytes and in β-selection, as are transcription factors from the Notch signaling pathway; other transcription factors such as B-cell lymphoma/leukemia 11b (Bcl11b), myeloblastosis viral oncogene homolog (Myb) and inhibitor of DNA binding 3 (Id3) are involved at specific stages. Differentiation of T cells into helper versus cytotoxic cells involves not only antagonistic interplay between Runx and T(h) inducing POZ-Kruppel factor (ThPOK) but also complex interactions between MAZR, Gata3 and Myb in the activation and silencing of genes such as Cd4 and Cd8 as well as the gene that encodes ThPOK itself. A wide range of well-defined transcription factors, including signal transducer and activator of transcriptions (STATs), T-bet, Gata3, nuclear factor of activated T cell (NFAT), adaptor-related protein complex 1 (AP-1) and nuclear factor κB (NF-κB), are known to shape T(h)1/T(h)2 differentiation. Runx and Gata3 also operate in this process, as do c-Maf and recombining binding protein for immunoglobulin Jκ region (RBP-J) and the chromatin-reorganizing protein special AT-rich sequence-binding protein 1 (SATB1). In this review, we briefly discuss how T-cell characteristics are acquired and become divergent from the point of view of transcriptional regulation.
Publication
Journal: Immunity
November/16/2015
Abstract
Type 2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Here, we report that Bcl11b, previously considered a T-cell-specific transcription factor, acted directly upstream of the key ILC2 transcription factor Gfi1 to maintain its expression in mature ILC2s. Consequently, Bcl11b(-/-) ILC2s downregulated Gata3 and downstream genes, including Il1rl1 (encoding IL-33 receptor), and upregulated Rorc and type 3 ILC (ILC3) genes. Additionally, independent of Gfi1, Bcl11b directly repressed expression of the gene encoding the ILC3 transcription factor Ahr, further contributing to silencing of ILC3 genes in ILC2s. Thus, Bcl11b(-/-) ILC2s lost their functions and gained ILC3 functions, and although they expanded in response to the protease allergen papain, they produced ILC3 but not ILC2 cytokines and caused increased airway infiltration of neutrophils instead of eosinophils. Our results demonstrate that Bcl11b is more than just a T-cell-only transcription factor and establish that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity.
Publication
Journal: Molecular Pharmacology
November/26/2007
Abstract
The present study underlines the importance of gemfibrozil, a lipid-lowering drug and an activator of peroxisome proliferator-activated receptor-alpha (PPAR-alpha), in inhibiting the disease process of adoptively transferred experimental allergic encephalomyelitis (EAE), an animal model of relapsing-remitting multiple sclerosis. Clinical symptoms of EAE, infiltration of mononuclear cells, and demyelination were significantly lower in SJL/J female mice receiving gemfibrozil through food chow than those without gemfibrozil. It is noteworthy that the drug was equally effective in treating EAE in PPAR-alpha wild-type as well as knockout mice. Gemfibrozil also inhibited the encephalitogenicity of MBP-primed T cells and switched the immune response from a Th1 to a Th2 profile independent of PPAR-alpha. Gemfibrozil consistently inhibited the expression and DNA-binding activity of T-bet, a key regulator of interferon-gamma (IFN-gamma) expression and stimulated the expression and DNA-binding activity of GATA3, a key regulator of IL-4. Gemfibrozil treatment decreased the number of T-bet-positive T cells and increased the number of GATA3-positive T cells in spleen of donor mice. The histological and immunohistochemical analyses also demonstrate the inhibitory effect of gemfibrozil on the invasion of T-bet-positive T cells into the spinal cord of EAE mice. Furthermore, we demonstrate that the differential effect of gemfibrozil on the expression of T-bet and GATA3 was due to its inhibitory effect on NO production. Although excess NO favored the expression of T-bet, scavenging of NO stimulated the expression of GATA-3. Taken together, our results suggest gemfibrozil, an approved drug for hyperlipidemia in humans, may find further therapeutic use in multiple sclerosis.
Publication
Journal: Molecular and Cellular Biology
July/18/2010
Abstract
In mammals, cell lineage specification is established at the blastocyst stage. At this stage, transcription factor Cdx2 represses pluripotency genes, thus promoting extraembryonic trophoblast fate. Recently, transcription factor Gata3 was shown to act in a parallel pathway in promoting trophoblast cell fate, suggesting that there are more factors working in the trophoblast lineage. Here, we report that the transcription factor Tcfap2c is expressed at a high level in the trophectoderm and is able to induce trophoblast fate in embryonic stem cells. Trophoblast fate induced by Tcfap2c does not require Cdx2 and vice versa, suggesting that the molecules act in alternative pathways. However, both Tcfap2c and Cdx2 are required for the upregulation of Elf5, a marker of trophoblast stem cell maintenance, suggesting that both factors are required for stable trophoblast induction. Tcfap2c-induced trophoblast-like cells are stable in long-term culture, indicating that they are capable of self-renewal. Tcfap2c-controlled trophoblast maintenance involves the induction of Cdx2 and the repression of the pluripotency factor Nanog. Tcfap2c-induced trophoblast-like cells differentiate to trophoblast derivatives in vitro and contribute to the trophectoderm in blastocysts in vivo. Taken together, these observations suggest that Tcfap2c and Cdx2 cooperate to override the pluripotency program and establish the extraembryonic trophoblast maintenance program in murine embryos.
Publication
Journal: Cancer Cell
August/2/2009
Abstract
Mammary epithelia are composed of luminal and myoepithelial/basal cells whose neoplastic transformations lead to distinct types of breast cancers with diverse clinical features. We report that mice deficient for the CDK4/6 inhibitor p18(Ink4c) spontaneously develop ER-positive luminal tumors at a high penetrance. Ink4c deletion stimulates luminal progenitor cell proliferation at pubertal age and maintains an expanded luminal progenitor cell population throughout life. We demonstrate that GATA3 binds to and represses INK4C transcription. In human breast cancers, low INK4C and high GATA3 expressions are simultaneously observed in luminal A type tumors and predict a favorable patient outcome. Hence, p18(INK4C) is a downstream target of GATA3, constrains luminal progenitor cell expansion, and suppresses luminal tumorigenesis in the mammary gland.
Publication
Journal: Journal of Allergy and Clinical Immunology
April/17/2013
Abstract
OBJECTIVE
There are few studies on the natural history of milk allergy. Most are single-site and not longitudinal, and these have not identified a means for early prediction of outcomes.
METHODS
Children aged 3 to 15 months were enrolled in an observational study with either (1) a convincing history of egg allergy, milk allergy, or both with a positive skin prick test (SPT) response to the trigger food and/or (2) moderate-to-severe atopic dermatitis (AD) and a positive SPT response to milk or egg. Children enrolled with a clinical history of milk allergy were followed longitudinally, and resolution was established by means of successful ingestion.
RESULTS
The cohort consists of 293 children, of whom 244 were given a diagnosis of milk allergy at baseline. Milk allergy has resolved in 154 (52.6%) subjects at a median age of 63 months and a median age at last follow-up of 66 months. Baseline characteristics that were most predictive of resolution included milk-specific IgE level, milk SPT wheal size, and AD severity (all P < .001). Baseline milk-specific IgG4 level and milk IgE/IgG4 ratio were not predictive of resolution and neither was expression of cytokine-inducible SH2-containing protein, forkhead box protein 3, GATA3, IL-10, IL-4, IFN-γ, or T-bet by using real-time PCR in CD25-selected, casein-stimulated mononuclear cells. A calculator to estimate resolution probabilities using baseline milk IgE level, SPT response, and AD severity was devised for use in the clinical setting.
CONCLUSIONS
In this cohort of infants with milk allergy, approximately one half had resolved over 66 months of follow-up. Baseline milk-specific IgE level, SPT wheal size, and AD severity were all important predictors of the likelihood of resolution.
Publication
Journal: Journal of Endocrinology
January/26/2012
Abstract
Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation. The mRNA expression of several proinflammatory (IL8, IL6, IL1β, and TNFα), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR γt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFβ, SM22α, αSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.
Publication
Journal: Journal of Experimental Medicine
November/15/2010
Abstract
Polycomb group (PcG) and trithorax group (TrxG) complexes exert opposing effects on the maintenance of the transcriptional status of the developmentally regulated Hox genes. In this study, we show that activation of STAT6 induces displacement of the PcG complex by the TrxG complex at the upstream region of the gene encoding GATA3, a transcription factor essential for T helper type 2 (Th2) cell differentiation. Once Th2 cells differentiate, TrxG complex associated with the TrxG component Menin binds to the whole GATA3 gene locus, and this binding is required for the long-term maintenance of expression of GATA3 and Th2 cytokine. Thus, STAT6-mediated displacement of PcG by the TrxG complex establishes subsequent STAT6-independent maintenance of GATA3 expression in Th2 cells via the recruitment of the Menin-TrxG complex.
Publication
Journal: Journal of Biological Chemistry
August/12/2004
Abstract
GATA3 expression is essential for type-2 helper T (Th2) cell differentiation. GATA3-mediated chromatin remodeling at the Th2 cytokine gene loci, including Th2-specific long range histone hyperacetylation of the interleukin (IL)-13/IL-4 gene loci, occurs in developing Th2 cells. However, little is known about the role of GATA3, if any, in the maintenance of established remodeled chromatin at the Th2 cytokine gene loci. Here, we established a Cre/LoxP-based site-specific recombination system in cultured CD4 T cells using a unique adenovirus-mediated gene transfer technique. This system allowed us to investigate the effect of loss of GATA3 expression in in vitro differentiated Th2 cells. After ablation of GATA3, we detected reduced production of all Th2 cytokines, increased DNA methylation at the IL-4 gene locus, and decreased histone hyperacetylation at the IL-5 gene locus but not significantly so at the IL-13/IL-4 gene loci. Thus, GATA3 plays important roles in the maintenance of the Th2 phenotype and continuous chromatin remodeling of the specific Th2 cytokine gene locus through cell division.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/27/2004
Abstract
The linked IL-4 and IL-13 cytokine genes, which are activated and silenced in T helper (Th) 2 and Th1 cells, respectively, are flanked by the equivalently expressed RAD50 and KIF3A genes. A scan of DNase I hypersensitivity and DNA methylation across approximately 100 kb of the KIF3A/IL-4/IL-13/RAD50 cluster revealed differences in chromatin structure between Th1 and Th2 cells at the 3' end of the RAD50 gene, a region previously shown to contain a locus control region (LCR) regulating Th2-specific expression of IL-4 and IL-13. Naive CD4 T cells did not exhibit any DNase I hypersensitivity in this region, but stimulation under either Th1 or Th2 conditions caused rapid development of three hypersensitive sites. An additional hypersensitive site developed rapidly only under Th2 conditions, through a mechanism dependent on signal transducers and activators of transcription 6 (STAT6) but not GATA3. Our data point to a physical separation in the actions of STAT6 and its downstream effector GATA3 during Th2 differentiation: STAT6 directly remodels the RAD50 LCR, whereas GATA3 acts only in the vicinity of the IL-4 gene. We suggest that the RAD50 LCR has a complex and dual role in Th1 and Th2 differentiation, communicating early T cell antigen receptor and cytokine signals to the IL-4/IL-13 locus in both differentiating cell types.
Publication
Journal: Developmental Neurobiology
June/16/2008
Abstract
Inner ear stem cells can be isolated by neurosphere formation from the vestibular organs and the cochlea. The cells are pluripotent, with the potential to become hair cells and neurons, the cochlear cell types whose loss causes deafness. Here we describe the control of cell fate decisions that determine the phenotype adopted by these progenitors, and we determine whether differentiation to sensory neurons is preferred over other types of neurons. Differentiation of progenitor cells recapitulated developmental pathways of embryonic sensory neurons. Based on marker expression, retinoic acid increased the yield of neurons and the percentage of sensory neurons obtained and caused a sharp increase in Pax2, a key transcription factor of cranial placodes. Markers of embryonic auditory and other sensory neurons, GATA3, Brn3a, and islet1, could be detected after 3 days of differentiation of the cells, and markers of the sensory phenotype, peripherin, calretinin, TrkC, and TrkB were expressed after 10 days. The differentiated cells had tetrodotoxin-sensitive sodium currents and fired action potentials, and recordings revealed functional AMPA type-glutamate receptors, further indicating that these cells had developed neuronal features. Neurons differentiated from these stem cells grew processes to hair cells in vitro. Development of functional activity in cells with the markers of sensory neurons suggested that the inner ear stem cells might have the capacity to replace cells lost due to neural degeneration.
Publication
Journal: Journal of Clinical Investigation
August/17/2014
Abstract
Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase-targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of Kras/Tp53-mutant lung adenocarcinoma that develops metastatic disease due to high expression of ZEB1. In lung adenocarcinoma cells from Kras/Tp53-mutant animals and human lung cancer cell lines, ZEB1 activated PI3K by derepressing miR-200 targets, including amphiregulin (AREG), betacellulin (BTC), and the transcription factor GATA6, which stimulated an EGFR/ERBB2 autocrine loop. Additionally, ZEB1-dependent derepression of the miR-200 and miR-183 target friend of GATA 2 (FOG2) enhanced GATA3-induced expression of the p110α catalytic subunit of PI3K. Knockdown of FOG2, p110α, and RHEB ameliorated invasive and metastatic propensities of tumor cells. Surprisingly, FOG2 was not required for mesenchymal differentiation, suggesting that mesenchymal differentiation and invasion are distinct and separable processes. Together, these results indicate that ZEB1 sensitizes lung adenocarcinoma cells to metastasis suppression by PI3K-targeted therapy and suggest that treatments to selectively modify the metastatic behavior of mesenchymal tumor cells are feasible and may be of clinical value.
Publication
Journal: Nature
October/11/2017
Abstract
Adaptive immune responses are tailored to different types of pathogens through differentiation of naive CD4 T cells into functionally distinct subsets of effector T cells (T helper 1 (TH1), TH2, and TH17) defined by expression of the key transcription factors T-bet, GATA3, and RORγt, respectively. Regulatory T (Treg) cells comprise a distinct anti-inflammatory lineage specified by the X-linked transcription factor Foxp3 (refs 2, 3). Paradoxically, some activated Treg cells express the aforementioned effector CD4 T cell transcription factors, which have been suggested to provide Treg cells with enhanced suppressive capacity. Whether expression of these factors in Treg cells-as in effector T cells-is indicative of heterogeneity of functionally discrete and stable differentiation states, or conversely may be readily reversible, is unknown. Here we demonstrate that expression of the TH1-associated transcription factor T-bet in mouse Treg cells, induced at steady state and following infection, gradually becomes highly stable even under non-permissive conditions. Loss of function or elimination of T-bet-expressing Treg cells-but not of T-bet expression in Treg cells-resulted in severe TH1 autoimmunity. Conversely, following depletion of T-bet- Treg cells, the remaining T-bet+ cells specifically inhibited TH1 and CD8 T cell activation consistent with their co-localization with T-bet+ effector T cells. These results suggest that T-bet+ Treg cells have an essential immunosuppressive function and indicate that Treg cell functional heterogeneity is a critical feature of immunological tolerance.
Publication
Journal: American Journal of Surgical Pathology
May/30/2007
Abstract
The morphologic distinction between prostate and urothelial carcinoma can be difficult. To identify novel diagnostic markers that may aid in the differential diagnosis of prostate versus urothelial carcinoma, we analyzed expression patterns in prostate and bladder cancer tissues using complementary DNA microarrays. Together with our prior studies on renal neoplasms and normal kidney, these studies suggested that the gene for placental S100 (S100P) is specifically expressed in benign and malignant urothelial cells. Using tissue microarrays, a polyclonal antiserum against S100P protein stained 86% of 295 urothelial carcinomas while only 3% of 260 prostatic adenocarcinomas and 1% of 133 renal cell carcinomas stained. A commercially available monoclonal antibody against S100P stained 78% of 300 urothelial carcinomas while only 2% of 256 prostatic adenocarcinomas and none of 137 renal cell carcinomas stained. A second gene, GATA3, also showed high level expression in urothelial tumors by cDNA array. A commercially available monoclonal antibody against GATA3 stained 67% of 308 urothelial carcinomas, but none of the prostate or renal carcinomas. For comparison, staining was also performed for p63 and cytokeratin 5/6. p63 stained 87% of urothelial carcinomas whereas CK5/6 stained 54%. Importantly, when S100P and p63 were combined 95% of urothelial carcinomas were labeled by one or both markers. We conclude that the detection of S100P and GATA3 protein expression may help distinguish urothelial carcinomas from other genitourinary neoplasms that enter into the differential diagnosis.
Publication
Journal: Journal of Immunology
June/14/2009
Abstract
Interaction of ICOS with its ligand is essential for germinal center formation, T cell immune responses, and development of autoimmune diseases. Human ICOS deficiency has been identified worldwide in nine patients with identical ICOS mutations. In vitro studies of the patients to date have shown only mild T cell defect. In this study, we report an in-depth analysis of T cell function in two siblings with novel ICOS deficiency. The brother displayed mild skin infections and impaired Ig class switching, whereas the sister had more severe symptoms, including immunodeficiency, rheumatoid arthritis, inflammatory bowel disease, interstitial pneumonitis, and psoriasis. Despite normal CD3/CD28-induced proliferation and IL-2 production in vitro, peripheral blood T cells in both patients showed a decreased percentage of CD4 central and effector memory T cells and impaired production of Th1, Th2, and Th17 cytokines upon CD3/CD28 costimulation or PMA/ionophore stimulation. The defective polarization into effector cells was associated with impaired induction of T-bet, GATA3, MAF, and retinoic acid-related orphan nuclear hormone receptor (RORC). Reduced CTLA-4(+)CD45RO(+)FoxP3(+) regulatory T cells and diminished induction of inhibitory cell surface molecules, including CTLA-4, were also observed in the patients. T cell defect was not restricted to CD4 T cells because reduced memory T cells and impaired IFN-gamma production were also noted in CD8 T cells. Further analysis of the patients demonstrated increased induction of receptor activator of NF-kappaB ligand (RANKL), lack of IFN-gamma response, and loss of Itch expression upon activation in the female patient, who had autoimmunity. Our study suggests that extensive T cell dysfunction, decreased memory T cell compartment, and imbalance between effector and regulatory cells in ICOS-deficient patients may underlie their immunodeficiency and/or autoimmunity.
Publication
Journal: Blood
November/6/2013
Abstract
Fibrocytes are hematopoietic stem cell-derived fibroblast precursors that are implicated in chronic inflammation, fibrosis, and wound healing. Myeloid-derived suppressor cells (MDSCs) expand in cancer-bearing hosts and contribute to tumor immune evasion. They are typically described as CD11b⁺HLA-DR⁻ in humans. We report abnormal expansions of CD11b⁺HLA-DR⁺ myeloid cells in peripheral blood mononuclear fractions of subjects with metastatic pediatric sarcomas. Like classical fibrocytes, they display cell surface α smooth muscle actin, collagen I/V, and mediate angiogenesis. However, classical fibrocytes serve as antigen presenters and augment immune reactivity, whereas fibrocytes from cancer subjects suppressed anti-CD3-mediated T-cell proliferation, primarily via indoleamine oxidase (IDO). The degree of fibrocyte expansion observed in individual subjects directly correlated with the frequency of circulating GATA3⁺CD4⁺ cells (R = 0.80) and monocytes from healthy donors cultured with IL-4 differentiated into fibrocytes with the same phenotypic profile and immunosuppressive properties as those observed in patients with cancer. We thus describe a novel subset of cancer-induced myeloid-derived suppressor cells, which bear the phenotypic and functional hallmarks of fibrocytes but mediate immune suppression. These cells are likely expanded in response to Th2 immune deviation and may contribute to tumor progression via both immune evasion and angiogenesis.
Publication
Journal: Nature Genetics
October/24/2017
Abstract
Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.
load more...