Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(40K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
August/4/2004
Abstract
Myc proteins regulate cell growth and division and are implicated in a wide range of human cancers. We show here that Fbw7, a component of the SCF(Fbw7) ubiquitin ligase and a tumor suppressor, promotes proteasome-dependent c-Myc turnover in vivo and c-Myc ubiquitination in vitro. Phosphorylation of c-Myc on threonine-58 (T58) by glycogen synthase kinase 3 regulates the binding of Fbw7 to c-Myc as well as Fbw7-mediated c-Myc degradation and ubiquitination. T58 is the most frequent site of c-myc mutations in lymphoma cells, and our findings suggest that c-Myc activation is one of the key oncogenic consequences of Fbw7 loss in cancer. Because Fbw7 mediates the degradation of cyclin E, Notch, and c-Jun, as well as c-Myc, the loss of Fbw7 is likely to elicit profound effects on cell proliferation during tumorigenesis.
Publication
Journal: Nature Genetics
July/16/2009
Abstract
Multiple members of the let-7 family of miRNAs are often repressed in human cancers, thereby promoting oncogenesis by derepressing targets such as HMGA2, K-Ras and c-Myc. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins LIN28 and LIN28B block let-7 precursors from being processed to mature miRNAs, suggesting that their overexpression might promote malignancy through repression of let-7. Here we show that LIN28 and LIN28B are overexpressed in primary human tumors and human cancer cell lines (overall frequency approximately 15%), and that overexpression is linked to repression of let-7 family miRNAs and derepression of let-7 targets. LIN28 and LIN28b facilitate cellular transformation in vitro, and overexpression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28 and LIN28B with poor clinical prognosis.
Publication
Journal: Plant Cell
December/8/1997
Abstract
In Arabidopsis, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) and requires protein biosynthesis for ABA-dependent gene expression. Previous experiments established that a 67-bp DNA fragment of the rd22 promoter is sufficient for dehydration- and ABA-induced gene expression and that this DNA fragment contains two closely located putative recognition sites for the basic helix-loop-helix protein MYC and one putative recognition site for MYB. We have carefully analyzed the 67-bp region of the rd22 promoter in transgenic tobacco plants and found that both the first MYC site and the MYB recognition site function as cis-acting elements in the dehydration-induced expression of the rd22 gene. A cDNA encoding a MYC-related DNA binding protein was isolated by DNA-ligand binding screening, using the 67-bp region as a probe, and designated rd22BP1. The rd22BP1 cDNA encodes a 68-kD protein that has a typical DNA binding domain of a basic region helix-loop-helix leucine zipper motif in MYC-related transcription factors. The rd22BP1 protein binds specifically to the first MYC recognition site in the 67-bp fragment. RNA gel blot analysis revealed that transcription of the rd22BP1 gene is induced by dehydration stress and ABA treatment, and its induction precedes that of rd22. We have reported a drought- and ABA-inducible gene that encodes the MYB-related protein ATMYB2. In a transient transactivation experiment using Arabidopsis leaf protoplasts, we demonstrated that both the rd22BP1 and ATMYB2 proteins activate transcription of the rd22 promoter fused to the beta-glucuronidase reporter gene. These results indicate that both the rd22BP1 (MYC) and ATMYB2 (MYB) proteins function as transcriptional activators in the dehydration- and ABA-inducible expression of the rd22 gene.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/20/1997
Abstract
Cancer cells are able to overproduce lactic acid aerobically, whereas normal cells undergo anaerobic glycolysis only when deprived of oxygen. Tumor aerobic glycolysis was recognized about seven decades ago; however, its molecular basis has remained elusive. The lactate dehydrogenase-A gene (LDH-A), whose product participates in normal anaerobic glycolysis and is frequently increased in human cancers, was identified as a c-Myc-responsive gene. Stably transfected Rat1a fibroblasts that overexpress LDH-A alone or those transformed by c-Myc overproduce lactic acid. LDH-A overexpression is required for c-Myc-mediated transformation because lowering its level through antisense LDH-A expression reduces soft agar clonogenicity of c-Myc-transformed Rat1a fibroblasts, c-Myc-transformed human lymphoblastoid cells, and Burkitt lymphoma cells. Although antisense expression of LDH-A did not affect the growth of c-Myc-transformed fibroblasts adherent to culture dishes under normoxic conditions, the growth of these adherent cells in hypoxia was reduced. These observations suggest that an increased LDH-A level is required for the growth of a transformed spheroid cell mass, which has a hypoxic internal microenvironment. Our studies have linked c-Myc to the induction of LDH-A, whose expression increases lactate production and is necessary for c-Myc-mediated transformation.
Publication
Journal: Cancer Cell
May/14/2007
Abstract
HIF-2alpha promotes von Hippel-Lindau (VHL)-deficient renal clear cell carcinoma (RCC) tumorigenesis, while HIF-1alpha inhibits RCC growth. As HIF-1alpha antagonizes c-Myc function, we hypothesized that HIF-2alpha might enhance c-Myc activity. We demonstrate here that HIF-2alpha promotes cell-cycle progression in hypoxic RCCs and multiple other cell lines. This correlates with enhanced c-Myc promoter binding, transcriptional effects on both activated and repressed target genes, and interactions with Sp1, Miz1, and Max. Finally, HIF-2alpha augments c-Myc transformation of primary mouse embryo fibroblasts (MEFs). Enhanced c-Myc activity likely contributes to HIF-2alpha-mediated neoplastic progression following loss of the VHL tumor suppressor and influences the behavior of hypoxic tumor cells.
Publication
Journal: Cell
April/2/1989
Abstract
In this report, we describe the isolation, sequence, and initial characterization of the cDNA for the muscle-specific regulatory factor skeletal myogenin. Transfection of myogenin into the mesenchymal cell line C3H10T1/2 produces cells expressing muscle-specific markers. Myogenin is absent in undifferentiated cells, peaks, and then declines following a stimulus to differentiate, and is overexpressed in myoblasts selected with 5-bromodeoxyuridine for the overproduction of factors that regulate the decision to differentiate. High levels of myogenin transcripts are present in the myotomal region of somites at 8.5 days of gestation in the mouse. Although myogenin and MyoD are different genes, they share the myc homology domain. Myogenin and MyoD thus form part of a gene family regulating myogenesis, and together with myd may constitute a set of factors that interact to regulate the determination and differentiation of muscle cells.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/18/2007
Abstract
The NOTCH1 signaling pathway directly links extracellular signals with transcriptional responses in the cell nucleus and plays a critical role during T cell development and in the pathogenesis over 50% of human T cell lymphoblastic leukemia (T-ALL) cases. However, little is known about the transcriptional programs activated by NOTCH1. Using an integrative systems biology approach we show that NOTCH1 controls a feed-forward-loop transcriptional network that promotes cell growth. Inhibition of NOTCH1 signaling in T-ALL cells led to a reduction in cell size and elicited a gene expression signature dominated by down-regulated biosynthetic pathway genes. By integrating gene expression array and ChIP-on-chip data, we show that NOTCH1 directly activates multiple biosynthetic routes and induces c-MYC gene expression. Reverse engineering of regulatory networks from expression profiles showed that NOTCH1 and c-MYC govern two directly interconnected transcriptional programs containing common target genes that together regulate the growth of primary T-ALL cells. These results identify c-MYC as an essential mediator of NOTCH1 signaling and integrate NOTCH1 activation with oncogenic signaling pathways upstream of c-MYC.
Publication
Journal: Molecular Cell
October/11/1999
Abstract
The targeted repair of mutant protooncogenes or the inactivation of their gene products may be a specific and effective therapy for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the MYC protooncogene in hematopoietic cells. Sustained expression of the MYC transgene culminated in the formation of malignant T cell lymphomas and acute myleoid leukemias. The subsequent inactivation of the transgene caused regression of established tumors. Tumor regression was associated with rapid proliferative arrest, differentiation and apoptosis of tumor cells, and resumption of normal host hematopoiesis. We conclude that even though tumorigenesis is a multistep process, remediation of a single genetic lesion may be sufficient to reverse malignancy.
Publication
Journal: Genes and Development
August/7/2003
Abstract
To assess the critical role of Wnt signals in intestinal crypts, we generated transgenic mice ectopically expressing Dickkopf1 (Dkk1), a secreted Wnt inhibitor. We find that epithelial proliferation is greatly reduced coincidentally with the loss of crypts. Although enterocyte differentiation appears unaffected, secretory cell lineages are largely absent. Disrupted intestinal homeostasis is reflected by an absence of nuclear beta-catenin, inhibition of c-myc expression, and subsequent up-regulation of p21CIP1/WAF1. Thus, our data are the first to establish a direct requirement for Wnt ligands in driving proliferation in the intestinal epithelium, and also define an unexpected role for Wnts in controlling secretory cell differentiation.
Publication
Journal: Genes and Development
September/24/2006
Abstract
Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.
Publication
Journal: Nature Cell Biology
March/25/2008
Abstract
Embryonic stem (ES) cells are unique in their ability to self-renew indefinitely and maintain pluripotency. These properties require transcription factors that specify the gene expression programme of ES cells. It has been possible to reverse the highly differentiated state of somatic cells back to a pluripotent state with a combination of four transcription factors: Klf4 is one of the reprogramming factors required, in conjunction with Oct4, Sox2 and c-Myc. Maintenance of self-renewal and pluripotency of ES cells requires Oct4, Sox2 and c-Myc, but Klf4 is dispensable. Here, we show that Krüppel-like factors are required for the self-renewal of ES cells. Simultaneous depletion of Klf2, Klf4 and Klf5 lead to ES cell differentiation. Chromatin immunoprecipitation coupled to microarray assay reveals that these Klf proteins share many common targets of Nanog, suggesting a close functional relationship between these factors. Expression analysis after triple RNA interference (RNAi) of the Klfs shows that they regulate key pluripotency genes, such as Nanog. Taken together, our study provides new insight into how the core Klf circuitry integrates into the Nanog transcriptional network to specify gene expression that is unique to ES cells.
Publication
Journal: Cancer Research
December/11/2007
Abstract
Regulation of the MYC oncogene remains unclear. Using 10058-F4, a compound that inhibits MYC-MAX transcription factor, MYC protein and gene expression were down-regulated in Namalwa cells, a Burkitt lymphoma. Compound 10058-F4 decreased MYC mRNA (45%), MYC protein (50%), and cell growth (32%). MYC-MAX transcription factor was disrupted 24 h after treatment, resulting in transcriptional inhibition of target genes. Because microRNAs (miRNA) disrupt mRNA translation, let-7a, let-7b, and mir-98 were selected using bioinformatics for targeting MYC. Inhibition of MYC-MAX transcription factor with 10058-F4 increased levels of members of the let-7 family. In inhibited cells at 24 h, let-7a, let-7b, and mir-98 were induced 4.9-, 1.3-, and 2.4-fold, respectively, whereas mir-17-5p decreased 0.23-fold. These results were duplicated using microRNA multianalyte suspension array technology. Regulation of MYC mRNA by let-7a was confirmed by transfections with pre-let-7a. Overexpression of let-7a (190%) decreased Myc mRNA (70%) and protein (75%). Down-regulation of Myc protein and mRNA using siRNA MYC also elevated let-7a miRNA and decreased Myc gene expression. Inverse coordinate regulation of let-7a and mir-17-5p versus Myc mRNA by 10058-F4, pre-let-7a, or siRNA MYC suggested that both miRNAs are Myc-regulated. This supports previous results in lung and colon cancer where decreased levels of the let-7 family resulted in increased tumorigenicity. Here, pre-let-7a transfections led to down-regulation of expression of MYC and its target genes and antiproliferation in lymphoma cells. These findings with let-7a add to the complexity of MYC regulation and suggest that dysregulation of these miRNAs participates in the genesis and maintenance of the lymphoma phenotype in Burkitt lymphoma cells and other MYC-dysregulated cancers.
Publication
Journal: PLoS Biology
January/4/2009
Abstract
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
Publication
Journal: Cell Stem Cell
June/30/2008
Abstract
Ectopic expression of the transcription factors Oct4, Sox2, c-Myc, and Klf4 in fibroblasts generates induced pluripotent stem (iPS) cells. Little is known about the nature and sequence of molecular events accompanying nuclear reprogramming. Using doxycycline-inducible vectors, we have shown that exogenous factors are required for about 10 days, after which cells enter a self-sustaining pluripotent state. We have identified markers that define cell populations prior to and during this transition period. While downregulation of Thy1 and subsequent upregulation of SSEA-1 occur at early time points, reactivation of endogenous Oct4, Sox2, telomerase, and the silent X chromosome mark late events in the reprogramming process. Cell sorting with these markers allows for a significant enrichment of cells with the potential to become iPS cells. Our results suggest that factor-induced reprogramming is a gradual process with defined intermediate cell populations that contain the majority of cells poised to become iPS cells.
Publication
Journal: Nature
November/12/2008
Abstract
Myc is a pleiotropic basic helix-loop-helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy.
Publication
Journal: Cell Stem Cell
January/11/2009
Abstract
Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.
Publication
Journal: Cell Stem Cell
May/26/2008
Abstract
Self-renewal is a hallmark of stem cells and cancer, but existence of a shared stemness program remains controversial. Here, we construct a gene module map to systematically relate transcriptional programs in embryonic stem cells (ESCs), adult tissue stem cells, and human cancers. This map reveals two predominant gene modules that distinguish ESCs and adult tissue stem cells. The ESC-like transcriptional program is activated in diverse human epithelial cancers and strongly predicts metastasis and death. c-Myc, but not other oncogenes, is sufficient to reactivate the ESC-like program in normal and cancer cells. In primary human keratinocytes transformed by Ras and I kappa B alpha, c-Myc increases the fraction of tumor-initiating cells by 150-fold, enabling tumor formation and serial propagation with as few as 500 cells. c-Myc-enhanced tumor initiation is cell-autonomous and independent of genomic instability. Thus, activation of an ESC-like transcriptional program in differentiated adult cells may induce pathologic self-renewal characteristic of cancer stem cells.
Publication
Journal: Molecular Cell
July/2/2002
Abstract
Oncogene overexpression activates p53 by a mechanism posited to involve uncharacterized hyperproliferative signals. We determined whether such signals produce metabolic perturbations that generate DNA damage, a known p53 inducer. Biochemical, cytological, cell cycle, and global gene expression analyses revealed that brief c-Myc activation can induce DNA damage prior to S phase in normal human fibroblasts. Damage correlated with induction of reactive oxygen species (ROS) without induction of apoptosis. Deregulated c-Myc partially disabled the p53-mediated DNA damage response, enabling cells with damaged genomes to enter the cycle, resulting in poor clonogenic survival. An antioxidant reduced ROS, decreased DNA damage and p53 activation, and improved survival. We propose that oncogene activation can induce DNA damage and override damage controls, thereby accelerating tumor progression via genetic instability.
Publication
Journal: Cell
November/29/1987
Abstract
We have purified and characterized the 50 kd activator protein 2 (AP-2), another enhancer-binding protein interacting with the human metallothionein IIA (hMT-IIA) gene control region. Purified AP-2 activates transcription in vitro from a hybrid promoter containing hMT-IIA upstream sequences. AP-2 also recognizes control elements of the human growth hormone, c-myc, and H-2Kb genes, and the SV40 and bovine papilloma virus enhancers. Multiple synthetic copies of the hMT-IIA high-affinity AP-2 binding site can act as efficient, cell-type-specific enhancer elements; their activity increases after treatment of cells with phorbol ester or cAMP-elevating agents. In contrast, a synthetic enhancer recognized by factor AP-1 is activated only by phorbol ester. AP-2 appears to mediate transcriptional activation in response to two different signal-transduction pathways, one involving the phorbol-ester- and diacylglycerol-activated protein kinase C, the other involving cAMP-dependent protein kinase A.
Publication
Journal: Cell
April/27/2008
Abstract
Pluripotent cells can be derived from fibroblasts by ectopic expression of defined transcription factors. A fundamental unresolved question is whether terminally differentiated cells can be reprogrammed to pluripotency. We utilized transgenic and inducible expression of four transcription factors (Oct4, Sox2, Klf4, and c-Myc) to reprogram mouse B lymphocytes. These factors were sufficient to convert nonterminally differentiated B cells to a pluripotent state. However, reprogramming of mature B cells required additional interruption with the transcriptional state maintaining B cell identity by either ectopic expression of the myeloid transcription factor CCAAT/enhancer-binding-protein-alpha (C/EBPalpha) or specific knockdown of the B cell transcription factor Pax5. Multiple iPS lines were clonally derived from both nonfully and fully differentiated B lymphocytes, which gave rise to adult chimeras with germline contribution, and to late-term embryos when injected into tetraploid blastocysts. Our study provides definite proof for the direct nuclear reprogramming of terminally differentiated adult cells to pluripotency.
Publication
Journal: Nature
July/18/2001
Abstract
Breast cancer is the most common malignancy among women. Most of these cancers overexpress cyclin D1, a component of the core cell-cycle machinery. We previously generated mice lacking cyclin D1 using gene targeting. Here we report that these cyclin D1-deficient mice are resistant to breast cancers induced by the neu and ras oncogenes. However, animals lacking cyclin D1 remain fully sensitive to other oncogenic pathways of the mammary epithelium, such as those driven by c-myc or Wnt-1. Our analyses revealed that, in mammary epithelial cells, the Neu-Ras pathway is connected to the cell-cycle machinery by cyclin D1, explaining the absolute dependency on cyclin D1 for malignant transformation in this tissue. Our results suggest that an anti-cyclin D1 therapy might be highly specific in treating human breast cancers with activated Neu-Ras pathways.
Publication
Journal: Clinical Cancer Research
September/17/2008
Abstract
OBJECTIVE
The aim of this study was to evaluate the microRNA expression patterns in squamous cell carcinoma (SCC) of the tongue.
METHODS
Expression levels of 156 human mature microRNAs were examined using real-time quantitative PCR (Taq Man MicroRNA Assays; Human Panel) on laser microdissected cells of 4 tongue carcinomas and paired normal tissues. Expression of mature miR-184 was further validated in 20 paired tongue SCC and the normal tissues. Potential oncogenic functions of miR-184 were evaluated in tongue SCC cell lines (Cal27, HN21B, and HN96) with miR-184 inhibitor. Plasma miR-184 levels were evaluated using real-time quantitative PCR.
RESULTS
Using 3-fold expression difference as a cutoff level, we identified 24 up-regulated mature miRNAs including miR-184, miR-34c, miR-137, miR-372, miR-124a, miR-21, miR-124b, miR-31, miR-128a, miR-34b, miR-154, miR-197, miR-132, miR-147, miR-325, miR-181c, miR-198, miR-155, miR-30a-3p, miR-338, miR-17-5p, miR-104, miR-134, and miR-213; and 13 down-regulated mature miRNAs including miR-133a, miR-99a, miR-194, miR-133b, miR-219, miR-100, miR-125b, miR-26b, miR-138, miR-149, miR-195, miR-107, and miR-139. Overexpression of miR-184 was further validated in 20 paired tongue SCC and normal tissues (P = 0.002). Inhibition of miR-184 in tongue SCC cell lines could reduce cell proliferation rate. Down-regulation of c-Myc was observed in two cell lines in response to miR-184 inhibitor. Suppressing miR-184 could induce apoptosis in all three cell lines. Plasma miR-184 levels were significantly higher in tongue SCC patients in comparison with normal individuals, and the levels were significantly reduced after surgical removal of the primary tumors.
CONCLUSIONS
Overexpression of miR-184 might play an oncogenic role in the antiapoptotic and proliferative processes of tongue SCC. In addition, plasma miR-184 levels were associated with the presence of primary tumor. Further studies on the aberrantly expressed miRNAs in tongue SCC as well as using plasma miRNAs as novel tumor markers are warranted.
Publication
Journal: Nature Genetics
September/8/2009
Abstract
An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.
Publication
Journal: Oncogene
June/27/2000
Abstract
Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias. Oncogene (2000).
load more...