Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(536)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Oncogene
November/14/2010
Abstract
The T-cell oncogene Lim-only 2 (LMO2) critically influences both normal and malignant haematopoiesis. LMO2 is not normally expressed in T cells, yet ectopic expression is seen in the majority of T-acute lymphoblastic leukaemia (T-ALL) patients with specific translocations involving LMO2 in only a subset of these patients. Ectopic lmo2 expression in thymocytes of transgenic mice causes T-ALL, and retroviral vector integration into the LMO2 locus was implicated in the development of clonal T-cell disease in patients undergoing gene therapy. Using array-based chromatin immunoprecipitation, we now demonstrate that in contrast to B-acute lymphoblastic leukaemia, human T-ALL samples largely use promoter elements with little influence from distal enhancers. Active LMO2 promoter elements in T-ALL included a previously unrecognized third promoter, which we demonstrate to be active in cell lines, primary T-ALL patients and transgenic mice. The ETS factors ERG and FLI1 previously implicated in lmo2-dependent mouse models of T-ALL bind to the novel LMO2 promoter in human T-ALL samples, while in return LMO2 binds to blood stem/progenitor enhancers in the FLI1 and ERG gene loci. Moreover, LMO2, ERG and FLI1 all regulate the +1 enhancer of HHEX/PRH, which was recently implicated as a key mediator of early progenitor expansion in LMO2-driven T-ALL. Our data therefore suggest that a self-sustaining triad of LMO2/ERG/FLI1 stabilizes the expression of important mediators of the leukaemic phenotype such as HHEX/PRH.
Publication
Journal: Journal of Clinical Oncology
June/14/2015
Abstract
OBJECTIVE
Current diagnostic tests for diffuse large B-cell lymphoma use the updated WHO criteria based on biologic, morphologic, and clinical heterogeneity. We propose a refined classification system based on subset-specific B-cell-associated gene signatures (BAGS) in the normal B-cell hierarchy, hypothesizing that it can provide new biologic insight and diagnostic and prognostic value.
METHODS
We combined fluorescence-activated cell sorting, gene expression profiling, and statistical modeling to generate BAGS for naive, centrocyte, centroblast, memory, and plasmablast B cells from normal human tonsils. The impact of BAGS-assigned subtyping was analyzed using five clinical cohorts (treated with cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP], n = 270; treated with rituximab plus CHOP [R-CHOP], n = 869) gathered across geographic regions, time eras, and sampling methods. The analysis estimated subtype frequencies and drug-specific resistance and included a prognostic meta-analysis of patients treated with first-line R-CHOP therapy.
RESULTS
Similar BAGS subtype frequencies were assigned across 1,139 samples from five different cohorts. Among R-CHOP-treated patients, BAGS assignment was significantly associated with overall survival and progression-free survival within the germinal center B-cell-like subclass; the centrocyte subtype had a superior prognosis compared with the centroblast subtype. In agreement with the observed therapeutic outcome, centrocyte subtypes were estimated as being less resistant than the centroblast subtype to doxorubicin and vincristine. The centroblast subtype had a complex genotype, whereas the centrocyte subtype had high TP53 mutation and insertion/deletion frequencies and expressed LMO2, CD58, and stromal-1-signature and major histocompatibility complex class II-signature genes, which are known to have a positive impact on prognosis.
CONCLUSIONS
Further development of a diagnostic platform using BAGS-assigned subtypes may allow pathogenetic studies to improve disease management.
Publication
Journal: Journal of Biological Chemistry
May/19/2008
Abstract
V(D)J recombination is a process integral to lymphocyte development. However, this process is not always benign, since certain lymphoid malignancies exhibit recurrent chromosomal abnormalities, such as translocations and deletions, that harbor molecular signatures suggesting an origin from aberrant V(D)J recombination. Translocations involving LMO2, TAL1, Ttg-1, and Hox11, as well as a recurrent interstitial deletion at 1p32 involving SIL/SCL, are cited examples of illegitimate V(D)J recombination. Previous studies using extrachromosomal substrates reveal that cryptic recombination signal sequences (cRSSs) identified near the translocation breakpoint in these examples support V(D)J recombination with efficiencies ranging from about 30- to 20,000-fold less than bona fide V(D)J recombination signals. To understand the molecular basis for these large differences, we investigated the binding and cleavage of these cRSSs by the RAG1/2 proteins that initiate V(D)J recombination. We find that the RAG proteins comparably bind all cRSSs tested, albeit more poorly than a consensus RSS. We show that four cRSSs that support levels of V(D)J recombination above background levels in cell culture (LMO2, TAL1, Ttg-1, and SIL) are also cleaved by the RAG proteins in vitro with efficiencies ranging from 18 to 70% of a consensus RSS. Cleavage of LMO2 and Ttg-1 by the RAG proteins can also be detected in cell culture using ligation-mediated PCR. In contrast, Hox11 and SCL are nicked but not cleaved efficiently in vitro, and cleavage at other adventitious sites in plasmid substrates may also limit the ability to detect recombination activity at these cRSSs in cell culture.
Publication
Journal: Biochemical Journal
October/11/2006
Abstract
SWI/SNF complexes are involved in both activation and repression of transcription. While one of two homologous ATPases, Brg1 [Brm (Brahma)-related gene 1] or Brm, is required for their chromatin remodelling function, less is known about how these complexes are recruited to DNA. We recently established that a DNA-binding complex containing TAL1/SCL, E47, GATA-1, LMO2 and Ldb1 stimulates P4.2 (protein 4.2) transcription in erythroid progenitors via two E box-GATA elements in the gene's proximal promoter. We show here that the SWI/SNF protein Brg1 is also associated with this complex and that both the E box and GATA DNA-binding sites in these elements are required for Brg1 recruitment. Further, Brg1 occupancy of the P4.2 promoter decreased with terminal erythroid differentiation in association with increased P4.2 transcription, while enforced expression of Brg1 in murine erythroleukaemia cells reduced P4.2 gene expression. Overexpression of Brg1 was associated with increased occupancy of the P4.2 promoter by the nuclear co-repressor mSin3A and HDAC2 (histone deacetylase 2) and with reduced histone H3 and H4 acetylation. Finally, a specific HDAC inhibitor attenuated Brg1-directed repression of P4.2 promoter activity in transfected cells. These results provide insight into the mechanism by which SWI/SNF proteins are recruited to promoters and suggest that transcription of P4.2, and most likely other genes, is actively repressed until the terminal differentiation of erythroid progenitors.
Publication
Journal: Molecular and Cellular Neurosciences
June/27/2005
Abstract
Nuclear LIM domain-only proteins (LMOs), which consist of two closely spaced 50 amino acid Zn2+-finger protein interaction modules mediate interactions between several classes of transcription factors important for development. LMO2 is necessary for development of the entire hematopoietic system and overexpression of LMO1 or LMO2 results in human acute T cell leukemia. LMO4 is the most widely expressed LMO but its normal function is unknown. During development, LMO4 is expressed in dividing neuroepithelial cells within the ventricular zone along the entire rostrocaudal axis of the nervous system. In telencephalic and spinal cord regions of the CNS, LMO4 is highly expressed in ventral but is low in dorsal proliferating neuroepithelial cells. To understand the role of LMO4 during mouse development, we generated a homozygous null mutation in the gene. We found that LMO4 is required for proper closure of the anterior neural tube. In the absence of LMO4, elevation, bending, and proliferation of the ventral neural epithelium and consequent fusion of the prospective dorsal ends of the neural tube do not occur. LMO4 mutant mice die embryonically and exhibit exencephaly, which is associated with abnormal patterns of cell proliferation and with high levels of apoptotic cell death within the neuroepithelium. LMO4 is thus essential for normal patterns of proliferation and for survival of neural epithelial cells in the rostral neural tube. LMO4 is also expressed in Schwann cell progenitors after these contact neurites, a process mediated in part by neuregulin (Nrg).
Publication
Journal: Cell Reports
January/30/2014
Abstract
Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces T cell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL's reported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes.
Publication
Journal: Blood
March/12/2012
Abstract
Nodal marginal zone lymphoma (NMZL) is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed gene expression, miRNA profile, and copy number data from 15 NMZL cases. For comparison, 16 follicular lymphomas (FLs), 9 extranodal marginal zone lymphomas, and 8 reactive lymph nodes and B-cell subtypes were included. The results were validated by quantitative RT-PCR in an independent series, including 61 paraffin-embedded NMZLs. NMZL signature showed an enriched expression of gene sets identifying interleukins, integrins, CD40, PI3K, NF-κB, and TGF-β, and included genes expressed by normal marginal zone cells and memory B cells. The most highly overexpressed genes were SYK, TACI, CD74, CD82, and CDC42EP5. Genes linked to G(2)/M and germinal center were down-regulated. Comparison of the gene expression profiles of NMZL and FL showed enriched expression of CHIT1, TGFB1, and TACI in NMZL, and BCL6, LMO2, and CD10 in FL. NMZL displayed increased expression of miR-221, miR-223, and let-7f, whereas FL strongly expressed miR-494. Our study identifies new candidate diagnostic molecules for NMZL and reveals survival pathways activated in NMZL.
Publication
Journal: Cancer Informatics
November/9/2011
Abstract
Aiming to find key genes and events, we analyze a large data set on diffuse large B-cell lymphoma (DLBCL) gene-expression (248 patients, 12196 spots). Applying the loess normalization method on these raw data yields improved survival predictions, in particular for the clinical important group of patients with medium survival time. Furthermore, we identify a simplified prognosis predictor, which stratifies different risk groups similarly well as complex signatures. We identify specific, activated B cell-like (ABC) and germinal center B cell-like (GCB) distinguishing genes. These include early (e.g. CDKN3) and late (e.g. CDKN2C) cell cycle genes. Independently from previous classification by marker genes we confirm a clear binary class distinction between the ABC and GCB subgroups. An earlier suggested third entity is not supported. A key regulatory network, distinguishing marked over-expression in ABC from that in GCB, is built by: ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. It predicts and supports the aggressive behaviour of the ABC subgroup. These results help to understand target interactions, improve subgroup diagnosis, risk prognosis as well as therapy in the ABC and GCB DLBCL subgroups.
Publication
Journal: Journal of Pathology
March/27/2007
Abstract
LIM domain only 2 (LMO2) proteins are important regulators in determining cell fate and controlling cell growth and differentiation. This study has investigated LMO2 expression in human prostatic tissue specimens, prostate cancer cell lines, and xenografts; and has assessed the possible role and mechanism of LMO2 in prostate carcinogenesis. Immunohistochemical analysis on a tissue microarray consisting of 91 human prostate specimens, including normal, prostatic hyperplasia, high-grade prostatic intraepithelial neoplasia, and invasive carcinoma, revealed that overexpression of LMO2 was significantly associated with advanced tumour stage, as measured by Gleason score (p = 0.012), as well as with the development of distant metastasis (p = 0.018). These data were supported by quantitative real-time PCR experiments, where LMO2 mRNA levels were found to be significantly higher in prostate tumour specimen than in normal epithelium (p = 0.037). The expression of LMO2 in cell lines and xenografts representing androgen-dependent (AD) and androgen-independent (AI) prostate cancer stages was further studied. Consistent with the in vivo data, LMO2 mRNA and protein were found to be overexpressed in the more aggressive AI cells (PC3, DU145, and AI CWR22 xenografts) compared with less aggressive AD cells (LNCaP and AD CWR22 xenografts). Furthermore, stable introduction of LMO2 into LNCaP cells conferred enhanced cell motility and invasiveness in vitro, accompanied by down-regulation of E-cadherin expression. Taken together, these findings provide the first evidence to support the hypothesis that LMO2 may play an important role in prostate cancer progression, possibly via repression of E-cadherin expression.
Publication
Journal: Journal of Experimental Medicine
January/3/2011
Abstract
During erythrocyte development, the nuclear cofactor Lim domain binding protein 1 (Ldb1) functions as a core subunit of multiprotein DNA binding complexes that include the transcription factors Scl and Gata-1 and the Lim-only adapter Lmo2. Scl, Gata-1, and Lmo2 are each required for erythropoiesis, suggesting that Ldb1-nucleated transcription complexes regulate key steps during erythropoiesis. We documented a requirement for Ldb1 in erythropoiesis in mice. Analysis of ldb1(-/-) embryos revealed a critical requirement for Ldb1 during primitive erythropoiesis, and conditional inactivation of ldb1 at later stages of gestation and in adult mice demonstrated that Ldb1 is continuously required for both definitive erythropoiesis and megakaryopoiesis. Down-regulation of Ldb1 in erythroblasts inhibited the expression of multiple erythroid-specific and prosurvival genes. These results represent the first unequivocal demonstration of a role for Ldb1 in erythropoiesis in vivo and establish a critical function for Ldb1-nucleated complexes in regulating the erythroid/megakaryocyte transcriptional program.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/7/2011
Abstract
The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.
Publication
Journal: Gene Therapy
September/14/2006
Abstract
Following gene therapy of SCID-X1 using murine leukemia virus (MLV) derived vector, two patients developed leukemia owing to an activating vector integration near the LMO2 gene. We found that these integrations reside within FRA11E, a common fragile site known to correlate with chromosomal breakpoints in tumors. Further analysis showed that fragile sites attract a nonrandom number of MLV integrations, shedding light on its integration mechanism and risk-to-benefit ratio in gene therapy.
Publication
Journal: Molecular Pharmaceutics
February/23/2012
Abstract
Gene therapy is a promising therapeutic approach to treat primary immunodeficiencies. Indeed, the clinical trial for the Wiskott-Aldrich Syndrome (WAS) that is currently ongoing at the Hannover Medical School (Germany) has recently reported the correction of all affected cell lineages of the hematopoietic system in the first treated patients. However, an extensive study of the clonal inventory of those patients reveals that LMO2, CCND2 and MDS1/EVI1 were preferentially prevalent. Moreover, a first leukemia case was observed in this study, thus reinforcing the need of developing safer vectors for gene transfer into HSC in general. Here we present a novel self-inactivating (SIN) vector for the gene therapy of WAS that combines improved safety features. We used the elongation factor 1 alpha (EFS) promoter, which has been extensively evaluated in terms of safety profile, to drive a codon-optimized human WASP cDNA. To test vector performance in a more clinically relevant setting, we transduced murine HSPC as well as human CD34+ cells and also analyzed vector efficacy in their differentiated myeloid progeny. Our results show that our novel vector generates comparable WAS protein levels and is as effective as the clinically used LTR-driven vector. Therefore, the described SIN vectors appear to be good candidates for potential use in a safer new gene therapy protocol for WAS, with decreased risk of insertional mutagenesis.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/19/2011
Abstract
Developmental control mechanisms often use multimeric complexes containing transcription factors, coregulators, and additional non-DNA binding components. It is challenging to ascertain how such components contribute to complex function at endogenous loci. We analyzed the function of components of a complex containing master regulators of hematopoiesis (GATA-1 and Scl/TAL1) and the non-DNA binding components ETO2, the LIM domain protein LMO2, and the chromatin looping factor LDB1. Surprisingly, we discovered that ETO2 and LMO2 regulate distinct target-gene ensembles in erythroid cells. ETO2 commonly repressed GATA-1 function via suppressing histone H3 acetylation, although it also regulated methylation of histone H3 at lysine 27 at select loci. Prior studies defined multiple modes by which GATA-1 regulates target genes with or without the coregulator Friend of GATA-1 (FOG-1). LMO2 selectively repressed genes that GATA-1 represses in a FOG-1-independent manner. As LMO2 controls hematopoiesis, its dysregulation is leukemogenic, and its influence on GATA factor function is unknown, this mechanistic link has important biological and pathophysiological implications. The demonstration that ETO2 and LMO2 exert qualitatively distinct functions at endogenous loci illustrates how components of complexes containing master developmental regulators can impart the capacity to regulate unique cohorts of target genes, thereby diversifying complex function.
Publication
Journal: Blood
January/23/2012
Abstract
The Ldb1/GATA-1/TAL1/LMO2 complex mediates long-range interaction between the β-globin locus control region (LCR) and gene in adult mouse erythroid cells, but whether this complex mediates chromatin interactions at other developmental stages or in human cells is unknown. We investigated NLI (Ldb1 homolog) complex occupancy and chromatin conformation of the β-globin locus in human erythroid cells. In addition to the LCR, we found robust NLI complex occupancy at a site downstream of the (A)γ-globin gene within sequences of BGL3, an intergenic RNA transcript. In cells primarily transcribing β-globin, BGL3 is not transcribed and BGL3 sequences are occupied by NLI core complex members, together with corepressor ETO2 and by γ-globin repressor BCL11A. The LCR and β-globin gene establish proximity in these cells. In contrast, when γ-globin transcription is reactivated in these cells, ETO2 participation in the NLI complex at BGL3 is diminished, as is BCL11A occupancy, and both BGL3 and γ-globin are transcribed. In these cells, proximity between the BGL3/γ-globin region and the LCR is established. We conclude that alternative NLI complexes mediate γ-globin transcription or silencing through long-range LCR interactions involving an intergenic site of noncoding RNA transcription and that ETO2 is critical to this process.
Publication
Journal: Development (Cambridge)
March/8/2000
Abstract
It is now widely accepted that hemopoietic cells born intraembryonically are the best candidates for the seeding of definitive hemopoietic organs. To further understand the mechanisms involved in the generation of definitive hemopoietic stem cells, we analysed the expression of the hemopoietic-related transcription factors Lmo2 and GATA-3 during the early steps of mouse development (7-12 dpc), with a particular emphasis on intraembryonic hemogenic sites. We show here that both Lmo2 and GATA-3 are present in the intraembryonic regions known to give rise to hemopoietic precursors in vitro and in vivo, suggesting that they act together at key points of hemopoietic development. (1) Lmo2 and GATA-3 are expressed in the caudal mesoderm during the phase of intraembryonic precursors determination. (2) A highly transient concomitant expression is observed in the caudal intraembryonic definitive endoderm, suggesting that these factors are involved in the specification of intraembryonic hemopoietic precursors. (3) Lmo2 and GATA-3 are expressed within the hemopoietic clusters located in the aortic floor during fetal liver colonisation. Furthermore, a strong GATA-3 signal allowed us to uncover previously unreported mesodermal aggregates beneath the aorta. A combined in situ and immunocytological analysis strongly suggests that ventral mesodermal GATA-3 patches are involved in the process of intraembryonic stem cell generation.
Publication
Journal: Development (Cambridge)
August/1/2006
Abstract
The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
March/9/2011
Abstract
BACKGROUND
Human galectin-3 (Mac-2 antigen) is a cell-type-specific multifunctional effector owing to selective binding of distinct cell-surface glycoconjugates harboring β-galactosides. The structural basis underlying the apparent preferences for distinct glycoproteins and for expression is so far unknown.
METHODS
We strategically combined solid-phase assays on 43 natural glycoproteins with a new statistical approach to fully flexible computational docking and also processed the proximal promoter region in silico.
RESULTS
The degree of branching in N-glycans and clustering of core 1 O-glycans are positive modulators for avidity. Sialylation of N-glycans in α2-6 linkage and of core 1 O-glycans in α2-3 linkage along with core 2 branching was an unfavorable factor, despite the presence of suited glycans in the vicinity. The lectin-ligand contact profile was scrutinized for six natural di- and tetrasaccharides enabling a statistical grading by analyzing flexible docking trajectories. The computational analysis of the proximal promoter region delineated putative sites for Lmo2/c-Ets-1 binding and new sites with potential for RUNX binding.
CONCLUSIONS
These results identify new features of glycan selectivity and ligand contact by combining solid-phase assays with in silico work as well as of reactivity potential of the promoter.
Publication
Journal: Neoplasia
September/8/2009
Abstract
OBJECTIVE
LIM domain only 2 (LMO2) has been identified as a novel oncogene associated with carcinogenesis and better prognosis in several malignant tumors. We investigate the involvement of LMO2 in pancreatic cancer.
METHODS
We evaluated LMO2 expression in cultured cells, bulk tissues, and microdissected cells from pancreatic cancers by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry.
RESULTS
Of 164 pancreatic cancers, 98 (60%) were positive for LMO2 expression. LMO2 was more frequently detected in high-grade pancreatic intraepithelial neoplasia (PanIN) lesions (PanIN-2 and -3) than in low-grade PanIN lesions (PanIN-1A and -1B; P < .001) and was not detected in normal pancreatic ductal epithelium. The LMO2 messenger RNA levels were significantly higher in invasive ductal carcinoma cells than in normal pancreatic cells as evaluated by quantitative reverse transcription-polymerase chain reaction analyses of microdissected cells (P = .036). We also found higher incidence of LMO2 expression in histologic grade G1/G2 cancers than in grade G3 cancers (P < .001). The median survival time of LMO2-positive patients was significantly longer than that of LMO2-negative patients (P < .001), and multivariate analyses revealed that high LMO2 expression was an independent predictor of longer survival (risk ratio, 0.432, P < .001). Even among patients with a positive operative margin, LMO2-positive patients had a significant survival benefit compared with LMO2-negative patients. We further performed a large cohort study (n = 113) to examine the LMO2 messenger RNA levels in formalin-fixed paraffin-embedded samples and found similar results.
CONCLUSIONS
LMO2 is a promising marker for predicting a better prognosis in pancreatic cancer.
Publication
Journal: Nucleic Acids Research
July/7/2014
Abstract
TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the (G)γ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the (G)γ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes.
Publication
Journal: Oncotarget
March/1/2016
Abstract
MUC16 (CA125) is a type-I transmembrane glycoprotein that is up-regulated in multiple cancers including pancreatic cancer (PC). However, the existence and role of carboxyl-terminal MUC16 generated following its cleavage in PC is unknown. Our previous study using a systematic dual-epitope tagged domain deletion approach of carboxyl-terminal MUC16 has demonstrated the generation of a 17-kDa cleaved MUC16 (MUC16-Cter). Here, we demonstrate the functional significance of MUC16-Cter in PC using the dual-epitope tagged version (N-terminal FLAG- and C-terminal HA-tag) of 114 carboxyl-terminal residues of MUC16 (F114HA). In vitro analyses using F114HA transfected MiaPaCa-2 and T3M4 cells showed enhanced proliferation, motility and increased accumulation of cells in the G2/M phase with apoptosis resistance, a feature associated with cancer stem cells (CSCs). This was supported by enrichment of ALDH+ CSCs along with enhanced drug-resistance. Mechanistically, we demonstrate a novel function of MUC16-Cter that promotes nuclear translocation of JAK2 resulting in phosphorylation of Histone-3 up-regulating stemness-specific genes LMO2 and NANOG. Jak2 dependence was demonstrated using Jak2+/+ and Jak2-/- cells. Using eGFP-Luciferase labeled cells, we demonstrate enhanced tumorigenic and metastatic potential of MUC16-Cter in vivo. Taken together, we demonstrate that MUC16-Cter mediated enrichment of CSCs is partly responsible for tumorigenic, metastatic and drug-resistant properties of PC cells.
Publication
Journal: Development (Cambridge)
June/30/2011
Abstract
We have discovered that angioblasts trigger an early inductive event in pancreatic differentiation. This event occurs soon after gastrulation, before the formation of blood vessels. Morphological studies revealed that Lmo2-expressing angioblasts reside in proximity to the somitic mesoderm and the gut endoderm from which pancreatic progenitors arise. The chemokine ligand CXCL12 expressed in the gut endoderm functions to attract the angioblasts that express its receptor CXCR4. Angioblasts then signal back to the gut endoderm to induce Pdx1 expression. Gain-of-function and loss-of-function experiments for CXCL12 and CXCR4 were performed to test their function in blood vessel formation and pancreatic differentiation. The ectopic expression of Cxcl12 in the endoderm attracted the angioblasts and induced ectopic Pdx1 expression, resulting in an expanded pancreatic bud and an increased area of insulin-expressing cells. By contrast, in chick embryos treated with beads soaked in AMD3100, an inhibitor of CXCR4, the migration of angioblasts towards the Cxcl12-expressing gut endoderm was arrested, causing a malformation of blood vessels. This led to the generation of a smaller pancreatic bud and a reduced area of insulin-expressing cells. Taken together, these results indicate that the gut endoderm and angioblasts attract each other through reciprocal CXCL12 and CXCR4 signaling. This has a pivotal role in the fate establishment of the pancreatic progenitor cells and in the potentiation of further differentiation into endocrine β-cells.
Publication
Journal: Clinical Cancer Research
April/8/2013
Abstract
OBJECTIVE
Epstein-Barr virus (EBV)-mediated lymphomagenesis in the setting of HIV infection has been widely accepted. However, little is known about how EBV impacts prognosis. We investigated the hypothesis that EBV infection is associated with expression of specific B-cell oncogenic markers in HIV-related diffuse large B-cell lymphoma (DLBCL) and examined the prognostic use of detecting EBV infection.
METHODS
HIV-related DLBCL cases diagnosed between 1996 and 2007 within Kaiser Permanente California were identified. Immunohistochemical staining was used to analyze the expression of selected markers that are cell-cycle regulators, B-cell activators, and antiapoptotic proteins among others. EBV infection was determined by in situ hybridization of EBV RNA. Correlations between EBV and marker expression were examined using Spearman correlation coefficient. The prognostic use of EBV status was examined in multivariable Cox model adjusting for International Prognostic Index (IPI). Receiver-operating characteristics (ROC) analysis was used to evaluate improvement in model discrimination.
RESULTS
Seventy HIV-related DLBCL cases were included (31% EBV±). EBV+ tumor was associated with increased expression of BLIMP1 and CD30 and reduced expression of BCL6 and LMO2. EBV+ tumor was independently associated with elevated 2-year overall mortality [HR, 3.3; 95% confidence interval (CI), 1.6-6.6]. Area under the ROC curve showed improved model discrimination when incorporating tumor EBV status with IPI in the prediction model [0.65 vs. 0.74 (IPI only)].
CONCLUSIONS
Our results suggest that EBV infection was associated with expression of several tumor markers that are involved in the NF-κB pathway and that detecting tumor EBV status may have prognostic use in HIV-related DLBCLs.
Publication
Journal: Blood
March/23/2005
Abstract
Postnatal thymic involution occurs progressively throughout the first 3 decades of life. It predominantly affects T-cell receptor (TCR) alphabeta-lineage precursors, with a consequent proportional increase in multipotent thymic precursors. We show that T-acute lymphoblastic leukemias (T-ALLs) demonstrate a similar shift with age from predominantly TCR expressing to an immature (IM0/delta/gamma) stage of maturation arrest. Half demonstrate HOX11, HOX11L2, SIL-TAL1, or CALM-AF10 deregulation, with each being associated with a specific, age-independent stage of maturation arrest. HOX11 and SIL-TAL represent alphabeta-lineage oncogenes, whereas HOX11L2 expression identifies an intermediate alphabeta/gammadelta-lineage stage of maturation arrest. In keeping with preferential alphabeta-lineage involution, the incidence of SIL-TAL1 and HOX11L2 deregulation decreased with age. In contrast, HOX11 deregulation became more frequent, suggesting longer latency. TAL1/LMO1 deregulation is more frequent in alphabeta-lineage T-ALL, when it is predominantly due to SIL-TAL1 rearrangements in children but to currently unknown mechanisms in adolescents and adults. LMO2 was more frequently coexpressed with LYL1, predominantly in IM0/delta/gamma adult cases, than with TAL1. These age-related changes in phenotype and oncogenic pathways probably reflect progressive changes in the thymic population at risk of malignant transformation.
load more...